
FLCC Library version 1.5
User Manual

Georgios Papamakarios Georgios Rizos

April 2013

Contents

1 Introduction 3

2 Data Types 5

2.1 Type flccPlan . 5

2.2 Type flccSize . 5

2.3 FLCC Computation Types . 6

2.4 FLCC Platforms . 6

2.5 Type flccResult . 7

3 Functions 8

3.1 lcorr_plan_f / lcorr_plan_d . 8

3.2 conv_plan_f / conv_plan_d . 10

3.3 lcorr_exec_f / lcorr_exec_d . 12

3.4 conv_exec_f / conv_exec_d . 14

3.5 lcorr_destroy_f / lcorr_destroy_d 16

3.6 conv_destroy_f / conv_destroy_d 17

3.7 flcc_malloc . 17

3.8 flcc_free . 18

4 Matlab Interface 19

4.1 lcorr_plan and conv_plan . 19

4.2 lcorr_exec and conv_exec . 20

4.3 lcorr_destroy and conv_destroy 21

1

5 Install, Compile and Run 22

5.1 Installation Instructions . 22

5.2 Compiling Instructions . 23

5.3 Running Issues . 24

6 Example Code 26

6.1 Example 1 . 26

6.2 Example 2 . 27

6.3 Example 3 . 28

6.4 Example 4 . 30

6.5 Example 5 . 30

2

Chapter 1

Introduction

The FLCC Library (which stands for Fast Local Correlation Coefficients) is a
software tool that provides an interface for the fast computation of two funda-
mental image processing operations: the distribution of Correlation Coefficients
with Local Normalization (also known as LCCs) and the sum of Convolution,
between an image (or a stream of images) and an image template. Generally
speaking, LCCs and Convolution are basic image-based information processing
steps that find numerous applications in a wide spectrum of areas concerning
image processing and computer vision, such as template or pattern matching,
image registration, motion detection and many more. However, these operations
(especially LCCs) have always been considered to be time-consuming and of high
arithmetic complexity, particularly for real-time applications, thus making their
usage rather troublesome.

This library intends to overcome this problem and provide users with a simple
yet powerful interface for carrying out the computations under consideration.
Especially in the case of LCCs, many implementations so far have tried to reduce
computation time by sacrificing the local normalization characteristic of the
LCCs or approximating the result in other lossy ways. This library, though,
manages to reduce computation time to a minimum, yet without making any
compromises on the quality of the result. The user can be sure that the output
result is accurately the “real” LCC distribution in any case, exactly as it is
defined formally.

The performance benefit is achieved by two routes. On the one hand, the
library implements a set of optimized fast algorithms for computing LCCs or
convolutions, selecting the most appropriate for each case, depending on the
size of the input images and templates and the capability of the machine it
runs on. On the other hand, it fully exploits current top-notch architectures,
namely multicore CPU processors and manycore GPU devices. In other words,
the library takes advantage of the system’s computational resources, executing

3

in parallel on multiple CPU threads or having the work load carried out by the
powerful GPU devices of the system (according to what it deems to be faster).

The FLCC Library Version 1.5, although being fully operational, is still in a
stage of infancy and more features are sure to be added in the future. For now,
FLCC Library Version 1.5 features:

• Fast LCC computation of 2D and 3D images of any size

• Fast Convolution computation of 2D and 3D images of any size

• Both single and double-precision arithmetic

• Accelerated LCC or Convolution computation of a stream of images with
the same template

• Ability to execute parallel computations on multiple CPUs or (currently
one) GPU

This document presents the library interface. It first describes the data types
and definitions used by the FLCC interface. Afterwards, the library routines
and their usage are presented. Finally, it concludes with compiling and running
instructions and a few code examples.

4

Chapter 2

Data Types

This section describes the data types and definitions used by the FLCC interface.

2.1 Type flccPlan

is an object which serves as a handle for FLCC execution configuration. It
stores the plan containing the information by which the FLCC Library intends
to execute the LCC or convolution computation for the specified parameters of
a problem.

2.2 Type flccSize

typedef struct {
int h ;
int w;
int d ;

} f l c c S i z e ;

is a structure used for storing the size of the images which take part in the
computation. The FLCC Library considers images to be arrays of real values,
corresponding to image pixel values, while it currently supports 2D and 3D
images. In the case of 2D images, variables h and w must be used to store the
images’ size and variable d can be ignored (otherwise the execution will fail).
Note that the images must be stored as linear consecutive memory space in
row-major order (also known as C-order). The dimensions’ order is h, w for
the 2D case and h, w, d for the 3D case. The row major format is described in
further detail later in this document.

5

2.3 FLCC Computation Types

The FLCC Library supports both single image and streaming computation of
LCCs and convolutions. That is, it can apply the template either on a single
image (the simplest case) or a stream of consecutive images of the same size, one
by one (especially useful when for example video is concerned). The significance
of the second case, apart from being handy, is that execution time is considerably
reduced compared to explicitly applying the same template on each image again
and again.

Type flccType is an enumeration of two values used to define whether the type
of planning that is to be done concerns one single computation between a single
image and a template, or a series of computations between a stream of images
and the same template.

typedef enum {
FLCC_SINGLE,
FLCC_STREAM

} f lccType ;

For example, if you intend to compute an LCC distribution between a single
image and a template you should choose FLCC_SINGLE. On the other hand,
if you have one template and a stream of images of the same size and you
want the LCC distribution between each and every image and the template,
you should choose FLCC_STREAM. Exactly the same applies for convolution
computations, as the same computation types are used. This choice is to be made
when planning, by use of functions lcorr_plan and conv_plan, as it is crucial
concerning the validity of their output. The usage of the FLCC Computation
Types is explained furthermore later in this document, below the sections of the
planning functions.

2.4 FLCC Platforms

The FLCC Library enables the choice of the platform upon which the user wishes
the computation to be carried out. Currently, the library can run either on the
CPU (or CPUs) or, if it exists, on a single GPU device (later, we have in mind
to implement the usage of multiple GPUs). The user can specify the platform
to be used by the following enumeration of types:

typedef enum {
FLCC_HOST,
FLCC_DEVICE,
FLCC_ANY

} f l c cP l a t f o rm ;

6

where FLCC_ANY denotes any platform between the host and the device
(meaning that the platform will be selected by the library, not the user).

This choice is stated only at the planning part of FLCC, whether it is for
LCC or convolution computation. Depending on the choice, a certain subset of
algorithms will be tested by the plan functions (lcorr_plan or conv_plan; this
choice has the same gravity for both of these computations) and thus it will take
less time to execute (with the exception of FLCC_ANY where all the algorithms
will be tested). This may have an effect on the execution function (lcorr_exec
or conv_exec) as maybe the plan will not be optimal. This choice exists for
debugging reasons, or if the user is absolutely sure that the one platform will
certainly be slower than the other and in which case does not want to wait longer
for the plan function to complete. Of course, some users might not own a GPU,
in which case it is a redundant choice to have the planner also try algorithms for
a GPU. The most sensible choice however (if you do have a machine equipped
with a GPU and waiting time is not such a big issue) is FLCC_ANY, as thus
the plan will utilize the full potential of FLCC Library. Type flccPlatform is an
enumeration of the aforementioned three values to be used in any way the user
deems necessary.

2.5 Type flccResult

is an enumeration of values used as API function return values. The full set of
defined return values and their meaning is as follows:

FLCC_SUCCESS All FLCC operations are successful

FLCC_INVALID_PLAN FLCC is passed an invalid plan handle

FLCC_INVALID_DIMENSION The user specifies an unsupported di-
mension number

FLCC_INVALID_SIZE The user specifies an unsupported size

FLCC_INVALID_TYPE The user specifies a non-existent FLCC
type

FLCC_INVALID_PLATFORM The user specifies a non-existent plat-
form

FLCC_INVALID_VALUE The user specifies a bad memory pointer
or an invalid array

FLCC_ALLOC_FAILED FLCC failed to allocate memory

FLCC_EXEC_FAILED FLCC failed to execute due to an inter-
nal error

7

Chapter 3

Functions

The FLCC Library is a lot similar to the FFTW and CUFFT libraries’ plan/exe-
cute model. The plan is a configuration mechanism containing a set of information
describing the optimal execution of a particular problem.

The FLCC interface includes 6 sets of main functions, 3 for LCC computation
and 3 for convolution computation. Each set consists of a single and a double-
precision version of a particular function. There are also 2 additional functions
for memory allocation and deallocation. All of them are described in detail
below.

3.1 lcorr_plan_f / lcorr_plan_d

f l c cR e s u l t lcorr_plan_f (f l c cP l an ∗plan , int dim ,
f l c c S i z e imSize , f l c c S i z e temSize , f l ccType type ,
f l c cP l a t f o rm plat form)

f l c cR e s u l t lcorr_plan_d (f l c cP l an ∗plan , int dim ,
f l c c S i z e imSize , f l c c S i z e temSize , f l ccType type ,
f l c cP l a t f o rm plat form)

Function lcorr_plan_X creates the LCC plan for the specified execution config-
uration. “X” is either “f” or “d”, indicating respectively the single or double-
precision version of this type of function. Even though no information regarding
the precision is dictated by the arguments, the appropriate function must be
chosen in order to obtain the optimal result FLCC may achieve. It measures
execution times of a number of different LCC algorithms and selects the optimal
one for the machine it runs on. The information generated during lcorr_plan_X
execution is stored in a type flccPlan object. This plan object can later be

8

used for multiple LCC computation executions of different arrays of the same
configuration. In fact, this is the inherent power of the plan/execute model,
that the planning is done only once, while the execution can be done an infinite
number of times, thus making the planning cost insignificant and improving the
overall performance significantly.

The size of both the image and the template are needed by this function, which
together determine the size of the problem, as well as the dimension of the arrays
taking part in the computation. Note that the arrays must be 2 or 3 dimensional
and their sizes on each dimension must be greater than 1. That means that the
user can’t configure a 2D computation by stating a 3D one and declaring one
size as 1.

The plan may be used for a single LCC computation between a single image
and a template, or a series of computations between a stream of images of the
same size and the same template. Notice that in the case of a stream of images,
the size of one image must be given, as if it would be a single image. The
number of images for the stream and the actual array complete with its values
are arguments for lcorr_exec_X (explained later). You have to be careful in
choosing the type parameter here, and use the plan only for the purpose intended
(single or streaming).

If you don’t have restrictions on the platform and wish FLCC Library to test
the full set of algorithms (both those that execute on the CPU host and those
that execute on the GPU device), you should choose as a value for the parameter
platform FLCC_ANY. Also, if the greater execution time of lcorr_plan_X is
not a grave problem we recommend FLCC_ANY. This way, FLCC Library is
used optimally, meaning it selects the most “efficient” between the CPU and
the GPU. If though you do want an LCC computation on a certain platform,
or maybe you do not own a GPU, you should consider the other choices as
they lessen the execution time of this function. Finally, if you have had FLCC
installed without its CUDA component, selecting FLCC_DEVICE will cause
lcorr_plan_X to fail.

It should be noted that, for backwards compatibility reasons, there is included
in FLCC v1.5 the function lcorr_plan that works exactly like lcorr_plan_f.

INPUT

plan Pointer to an flccPlan object

dim Number of dimensions (2 or 3)

imSize Number of floats/doubles constituting one image

temSize Number of floats/doubles constituting the tem-
plate

type Single or streaming LCC computation (e.g.
FLCC_SINGLE or FLCC_STREAM)

9

platform Test algorithms for CPUs, GPU or both
(e.g. FLCC_HOST, FLCC_DEVICE or
FLCC_ANY)

OUTPUT

plan Contains an flccPlan handle value

RETURN VALUES

FLCC_SUCCESS FLCC successfully created the plan

FLCC_INVALID_PLAN FLCC is passed an invalid plan handle

FLCC_INVALID_DIMENSION FLCC supports only 2D or 3D problems

FLCC_INVALID_SIZE The sizes parameters are unsupported

FLCC_INVALID_TYPE Parameter type is non-existent

FLCC_INVALID_PLATFORM Parameter platform is non-existent

FLCC_ALLOC_FAILED FLCC failed to allocate memory

FLCC_EXEC_FAILED FLCC failed to execute due to an inter-
nal error

3.2 conv_plan_f / conv_plan_d

f l c cR e s u l t conv_plan_f (f l c cP l an ∗plan , int dim ,
f l c c S i z e imSize , f l c c S i z e temSize , f l ccType type ,
f l c cP l a t f o rm plat form)

f l c cR e s u l t conv_plan_d (f l c cP l an ∗plan , int dim ,
f l c c S i z e imSize , f l c c S i z e temSize , f l ccType type ,
f l c cP l a t f o rm plat form)

Function conv_plan_X works exactly in the same way as lcorr_plan_X, mea-
suring execution time of different convolution algorithms. “X” is either “f” or
“d”, indicating respectively the single or double-precision version of this type of
function. Even though no information regarding the precision is dictated by the
arguments, the appropriate function must be chosen in order to obtain the opti-
mal result FLCC may achieve. The information generated during conv_plan_X
execution is again stored in a type flccPlan object. This plan object can later be

10

used for multiple convolution computation executions of different arrays of the
same configuration.

The size of both the image and the template are needed by this function, which
together determine the size of the problem, as well as the dimension of the arrays
taking part in the computation. Note that the arrays must be 2 or 3 dimensional
and their sizes on each dimension must be greater than 1. That means that the
user can’t configure a 2D computation by stating a 3D one and declaring one
size as 1.

The plan may be used for a single convolution computation between a single
image and a template, or a series of computations between a stream of images
of the same size and the same template. Notice that in the case of a stream of
images, the size of one image must be given, as if it would be a single image.
The number of images for the stream and the actual array complete with its
values are arguments for conv_exec_X (explained later). You have to be careful
in choosing the type parameter here, and use the plan only for the purpose
intended (single or streaming).

If you don’t have restrictions on the platform and wish FLCC Library to test
the full set of algorithms (both those that execute on the CPU host and those
that execute on the GPU device), you should choose as a value for the parameter
platform FLCC_ANY. Also, if the greater execution time of conv_plan_X is
not a grave problem, we recommend FLCC_ANY. This way, FLCC Library is
used optimally, meaning it selects the most “efficient” between the CPU and the
GPU. If though you do want a convolution computation on a certain platform,
or maybe you do not own a GPU, you should consider the other choices as
they lessen the execution time of this function. Finally, if you have had FLCC
installed without its CUDA component, selecting FLCC_DEVICE will cause
conv_plan_X to fail.

It should be noted that, for backwards compatibility reasons, there is included
in FLCC v1.5 the function conv_plan that works exactly like conv_plan_f.

INPUT

plan Pointer to an flccPlan object

dim Number of dimensions (2 or 3)

imSize Number of floats/doubles constituting one image

temSize Number of floats/doubles constituting the tem-
plate

type Single or streaming convolution computation
(e.g. FLCC_SINGLE or FLCC_STREAM)

platform Test algorithms for CPUs, GPU or both
(e.g. FLCC_HOST, FLCC_DEVICE or
FLCC_ANY)

11

OUTPUT

plan Contains an flccPlan handle value

RETURN VALUES

FLCC_SUCCESS FLCC successfully created the plan

FLCC_INVALID_PLAN FLCC is passed an invalid plan handle

FLCC_INVALID_DIMENSION FLCC supports only 2D or 3D problems

FLCC_INVALID_SIZE The sizes parameters are unsupported

FLCC_INVALID_TYPE Parameter type is non-existent

FLCC_INVALID_PLATFORM Parameter platform is non-existent

FLCC_ALLOC_FAILED FLCC failed to allocate memory

FLCC_EXEC_FAILED FLCC failed to execute due to an inter-
nal error

3.3 lcorr_exec_f / lcorr_exec_d

f l c cR e s u l t l corr_exec_f (f l c cP l an plan , f loat ∗ image ,
f loat ∗ templat , f loat ∗ l c c , int imCount)

f l c cR e s u l t lcorr_exec_d (f l c cP l an plan , double ∗ image ,
double ∗ templat , double ∗ l c c , int imCount)

Function lcorr_exec_X executes an LCC computation according to the informa-
tion stored in a type flccPlan object, which has already been created by function
lcorr_plan_X. “X” is either “f” or “d”, indicating respectively the single or
double-precision version of this type of function.

Apart from the plan, needed are also: a pointer to the float/double array of the
image and a pointer to the float/double array of the template. The template
must be of template size as stated during plan configuration. The matter of the
size of the image is a little more complicated. In case the user wants a single
LCC distribution of a single image (in other words the plan was configured using
FLCC_SINGLE), the array should be of image size (as decreed during the call
of lcorr_plan_X). In case of a stream of images, the array must contain the
first image, immediately afterwards the second et cetera. The size will be the
image size multiplied by imCount. It should be highlighted that the type of the
computation (single or streaming) is determined by the plan and not by this

12

function. It is the responsibility of the user to use the right plan for the right
purpose.

Moreover, in the case of streaming computation, the number of images to be
processed must be declared beforehand as well, in the form of parameter imCount.
In the case of a single LCC computation, the parameter imCount is ignored and
only one image is processed (that means that imCount can be anything—we
recommend the value 1 to be used for clarity reasons). Also, if you give a pointer
to an array which contains more images than you declare, lcorr_exec_X will
NOT process them all—just the first n the user declares. Naturally FLCC may
process garbage if you give an imCount greater than the number of images to be
processed, so the user must be extra careful when calling lcorr_exec_X.

The elements in both cases are to be given in row major format where the
dimensions are in the following order: h, w, d. That means that dimension-wise
the index which changes the most frequently is d, then w, then h. Actually, this
means that you have to be careful to make the according declaration in the type
flccSize objects imSize and temSize.

The array lcc in which the LCC distribution is to be stored must be preallocated
by the user. Again, in the case of a single LCC computation the array must be
of convolution size (explained later), while in the case of a stream of images lcc
array must be of convolution size multiplied by imCount. This function, fills the
lcc array with the local correlation coefficients in row major order as explained
before.

Convolution size:

Let ih × iw × id be the image size where ih, iw and id are the sizes of the array
along each dimension. The same with th, tw and td for the template. Let sh,
sw and sd be the sizes of lcc array. Then:

sh = ih + th − 1, sw = iw + tw − 1, sd = id + td − 1

Thus, convolution size = sh×sw×sd. (In the calculations above ignore dimension
d in the 2D case.)

It should be noted that, for backwards compatibility reasons, there is included
in FLCC v1.5 the function lcorr_exec that works exactly like lcorr_exec_f.

INPUT

plan Contains an flccPlan handle value

image Pointer to a row major float/double array or a
stream of row major float arrays

templat Pointer to a row major float/double array

lcc Pointer to a float/double array

imCount The number of images to be processed

13

OUTPUT

lcc LCC between image or stream of images and
template

RETURN VALUES

FLCC_SUCCESS FLCC successfully executed an LCC
computation

FLCC_INVALID_PLAN FLCC is passed an invalid plan handle

FLCC_INVALID_SIZE Parameter imCount is less than 1 in case
of streaming (otherwise it can be any-
thing)

FLCC_INVALID_VALUE Parameters image, templat or lcc are
invalid

FLCC_ALLOC_FAILED FLCC failed to allocate memory

FLCC_EXEC_FAILED FLCC failed to execute due to an inter-
nal error

3.4 conv_exec_f / conv_exec_d

f l c cR e s u l t conv_exec_f (f l c cP l an plan , f loat ∗ image ,
f loat ∗ templat , f loat ∗conv , int imCount)

f l c cR e s u l t conv_exec_d (f l c cP l an plan , double ∗ image ,
double ∗ templat , double ∗conv , int imCount)

Function conv_exec_X works exactly like lcorr_exec_X in that it executes a
convolution computation according to the information stored in a type flccPlan
object, which has already been created by function conv_plan_X. “X” is either
“f” or “d”, indicating respectively the single or double-precision version of this
type of function.

Apart from the plan, needed are also: a pointer to the float/double array of the
image and a pointer to the float/double array of the template. The template
must be of template size as stated during plan configuration. The matter of the
size of the image is a little more complicated. In case the user wants a single
convolution of a single image (in other words the plan was configured using
FLCC_SINGLE), the array should be of image size (as decreed during the call
of conv_plan_X). In case of a stream of images, the array must contain the
first image, immediately afterwards the second et cetera. The size will be the

14

image size multiplied by imCount. It should be highlighted that the type of the
computation (single or streaming) is determined by the plan and not by this
function. It is the responsibility of the user to use the right plan for the right
purpose.

Moreover, in the case of streaming computation, the number of images to be
processed must be declared beforehand as well, in the form of parameter imCount.
In the case of a single convolution computation, the parameter imCount is ignored
and only one image is processed (that means that imCount can be anything—we
recommend the value 1 to be used for clarity reasons). Also, if you give a pointer
to an array which contains more images than you declare, conv_exec_X will
NOT process them all—just the first n the user declares. Naturally, FLCC may
process garbage if you give an imCount greater than the number of images to be
processed, so the user must be extra careful when calling conv_exec_X.

The elements in both cases are to be given in row major format where the
dimensions are in the following order: h, w, d. That means that dimension-wise
the index which changes the most frequently is d, then w, then h. Actually, this
means that you have to be careful to make the according declaration in the type
flccSize objects imSize and temSize.

The array conv in which the convolution is to be stored must be preallocated by
the user. Again, in the case of a single convolution computation the array must
be of convolution size (explained later), while in the case of a stream of images
conv array must be of convolution size multiplied by imCount. This function,
fills the conv array with the convolution in row major order as explained before.

Convolution size:

Let ih × iw × id be the image size where ih, iw and id are the sizes of the array
along each dimension. The same with th, tw and td for the template. Let sh,
sw and sd be the sizes of conv array. Then:

sh = ih + th − 1, sw = iw + tw − 1, sd = id + td − 1

Thus, convolution size = sh×sw×sd. (In the calculations above ignore dimension
d in the 2D case.)

It should be noted that, for backwards compatibility reasons, there is included
in FLCC v1.5 the function conv_exec that works exactly like conv_exec_f.

INPUT

plan Contains an flccPlan handle value

image Pointer to a row major float/double array or a
stream of row major float arrays

templat Pointer to a row major float/double array

conv Pointer to a float/double array

15

imCount The number of images to be processed

OUTPUT

conv Convolution between image or stream of images
and template

RETURN VALUES

FLCC_SUCCESS FLCC successfully executed an convolu-
tion computation

FLCC_INVALID_PLAN FLCC is passed an invalid plan handle

FLCC_INVALID_SIZE Parameter imCount is less than 1 in case
of streaming (otherwise it can be any-
thing)

FLCC_INVALID_VALUE Parameters image, templat or conv are
invalid

FLCC_ALLOC_FAILED FLCC failed to allocate memory

FLCC_EXEC_FAILED FLCC failed to execute due to an inter-
nal error

3.5 lcorr_destroy_f / lcorr_destroy_d

f l c cR e s u l t l cor r_dest roy_f (f l c cP l an ∗plan)

f l c cR e s u l t lcorr_destroy_d (f l c cP l an ∗plan)

Function lcorr_destroy_X frees all resources occupied by an flccPlan object
created by lcorr_plan_X, thus making it unusable. “X” is either “f” or “d”,
indicating respectively the single or double-precision version of this type of
function. It should be called if the plan is no more needed.

It should be noted that, for backwards compatibility reasons, there is included in
FLCC v1.5 the function lcorr_destroy that works exactly like lcorr_destroy_f.

INPUT

plan Points to an flccPlan object

16

RETURN VALUES

FLCC_SUCCESS FLCC successfully destroyed the plan

FLCC_INVALID_VALUE Bad memory pointer

FLCC_EXEC_FAILED FLCC failed to destroy the plan due to
an internal error

3.6 conv_destroy_f / conv_destroy_d

f l c cR e s u l t conv_destroy_f (f l c cP l an ∗plan)

f l c cR e s u l t conv_destroy_d (f l c cP l an ∗plan)

Function conv_destroy_X frees all resources occupied by an flccPlan object
created by conv_plan_X, thus making it unusable. “X” is either “f” or “d”,
indicating respectively the single or double-precision version of this type of
function. It should be called if the plan is no more needed.

It should be noted that, for backwards compatibility reasons, there is included in
FLCC v1.5 the function conv_destroy that works exactly like conv_destroy_f.

INPUT

plan Points to an flccPlan object

RETURN VALUES

FLCC_SUCCESS FLCC successfully destroyed the plan

FLCC_INVALID_VALUE Bad memory pointer

FLCC_EXEC_FAILED FLCC failed to destroy the plan due to
an internal error

3.7 flcc_malloc

void ∗ f l c c_mal l oc (s i z e_t bytes)

All the arrays that are passed as input arguments in lcorr_exec_X and
conv_exec_X, namely the image (or stream of images), the template and the
output (LCC or convolution), must have already been allocated in page-locked

17

CPU memory. To facilitate this process and to relieve the user of the details
of it, we provide this function for memory allocation, which works similarly
to malloc and makes sure the aforementioned conditions are met. Thus, the
discussed arrays must always be allocated by this function. Note that if usual
malloc or new are used instead, the FLCC execution routines will probably fail.

INPUT

bytes Number of bytes to be allocated

OUTPUT

A void pointer pointing to the first position of the allocated memory. It should
be typecasted to the needed type (here, float * or double *). If allocation fails,
NULL is returned.

3.8 flcc_free

void f l c c_ f r e e (void ∗ array)

This function frees the memory previously allocated by flcc_malloc. It works
similarly to free, and it should be used when the array is no longer needed. Note
that memory allocated by flcc_malloc cannot be deallocated by free, so this
function must be used instead.

INPUT

array The array to be deallocated

18

Chapter 4

Matlab Interface

Additionally to the C interface described above, there is also the possibility to
use FLCC directly from Matlab. For every C function of FLCC there exists
a corresponding Matlab function of the same name, which invokes the former
internally and therefore performs the same action without the user having to
leave the Matlab environment. This way, FLCC’s Matlab interface manages to
combine the efficiency and high performance of FLCC with the comfort and
straightforwardness of the Matlab programming environment. In this chapter
we describe in detail the calling mode of the FLCC’s Matlab interface functions.

4.1 lcorr_plan and conv_plan

plan = lcorr_plan (imSize , temSize , type , platform ,
p r e c i s i o n)

plan = conv_plan (imSize , temSize , type , platform ,
p r e c i s i o n)

These are the planner functions of FLCC as they appear in the Matlab program-
ming environment, for LCC and convolution respectively. They work exactly as
the C functions of the same name and they produce the optimal plan for each
computation specification.

INPUT

imSize One-dimensional Matlab array describing the
size of the image; may have 2 or 3 elements for
a 2D or a 3D image respectively

19

temSize One-dimensional Matlab array describing the
size of the template; may have 2 or 3 elements
for a 2D or a 3D template respectively

type Matlab string specifying the computa-
tion type (can be ‘FLCC_SINGLE’ or
‘FLCC_STREAM’)

platform Matlab string specifying the computation plat-
form (can be ‘FLCC_HOST’, ‘FLCC_DEVICE’
or ‘FLCC_ANY’)

precision Matlab string specifying the desired precision
(can be ‘single’ or ‘double’)

OUTPUT

plan Contains a plan handle value for FLCC

Note that the arguments for the type, the platform and the precision are
optional; in case they are omitted, their default values become FLCC_SINGLE,
FLCC_ANY and single respectively.

4.2 lcorr_exec and conv_exec

l c c = lcor r_exec (plan , image , templat)

conv = conv_exec (plan , image , templat)

These are the Matlab analogues for the FLCC execution functions. They perform
LCC and convolution respectively according to the specified plan. The latter
has to be the output of the corresponding Matlab planner function.

There is an important distinction in the way the above functions are called,
depending on whether we have a single image computation or streaming. In the
case of a single image, the image is passed to the function in the form of a 2D or
3D Matlab array and the result is returned as a 2D or 3D Matlab array as well.
In the case of streaming, though, the whole image stream needs to be passed
to the function and it may consist of one or more images. In this case the user
needs to pass the images as a cell array, with each cell containing a different
image in the form of a 2D or 3D Matlab array. The output is also returned as a
cell array of the same size as the input image cell array, with each cell containing
the result for the corresponding image. There are no restrictions on the size
and dimensionality of the cell array. The only restriction regards the size of the

20

images; they all need to be of the same size for the streaming computation to be
meaningful. In any other case, the result is undefined.

The image and template to be passed as arguments may either be of single or
double-precision (with the result being of single or double-precision respectively).
It is the user’s responsibility to make sure that the plan has been generated
using the appropriate precision specifier in the planner function.

INPUT

plan The plan handle returned by a call to the corre-
sponding planner function

image Matlab array describing the image; cell array of
images in the case of streaming

templat Matlab array describing the template

OUTPUT

lcc/conv Matlab array describing the result of the compu-
tation; cell array in the case of streaming

4.3 lcorr_destroy and conv_destroy

l c o r r_des t roy (plan , p r e c i s i o n)

conv_destroy (plan , p r e c i s i o n)

Similarly to the C interface, the plan uses some memory resources that should be
released after it is no longer needed. This can be done via the above functions.
After its destruction, the plan is rendered unusable. Note that the precision
specifier should be the same as in the plan creation. The argument is optional
and defaults to single.

INPUT

plan The plan handle returned by a call to the corre-
sponding planner function

precision Matlab string specifying the precision the plan
has been generated with (can be ‘single’ or ‘dou-
ble’; default is ‘single’)

21

Chapter 5

Install, Compile and Run

5.1 Installation Instructions

FLCC comes as a source code package and installs under UNIX/Linux systems.
It can also be installed under Windows via Cygwin. Installing can be done
simply by issuing “make install” in the package’s main folder. This will generate
the library file, libflcc.a, in the folder lib under the package’s main folder, which
then the user may link with their own programs. Moreover, to install the Matlab
interface, issue “make matlab” in the package’s main folder. This will produce
the executable mex files that implement FLCC’s functions in folder mex/bin.

In order to obtain the power to use the GPU devices, FLCC uses the CUDA
programming model and architecture. This means that, in order to use FLCC’s
GPU capability, the user must have CUDA (any version) already installed on
their system and the GPUs to be used must be CUDA compatible.

Also, in order to obtain its full functionality, FLCC uses a number of libraries
itself. The complete list is:

• Pthreads (any version)

• FFTW version 3.x with threads (both the single and double-precision
versions)

• CUFFT (any version)

That practically means that the aforementioned libraries must be already installed
on the system in order for FLCC to install successfully and to be fully functional,
as described in this manual.

Nevertheless, in case the user doesn’t have CUDA and CUFFT installed on
their system or if for any reason wishes so, FLCC can still be installed without

22

them and operate only on the system’s CPUs. To do so, the user will only
need to uncomment a specific line in the makefile before installing. We should
mention that in case FLCC is installed without CUDA and CUFFT, passing
FLCC_DEVICE as a platform designator to the planning functions will make
these functions fail. Apart from that, FLCC will work normally, except that it
won’t take advantage anymore of the GPU-based methods.

The same as above works for FFTW. In case the user doesn’t have it, doesn’t
want to install it or for any reason wishes to do so, FLCC can be installed without
FFTW by simply uncommenting a line in the makefile prior to installing. This
won’t change at all the way FLCC is used and FLCC will continue to perform just
by ignoring the FFTW-based methods. We should note that installing without
CUDA and installing without FFTW are two totally independent actions and
thus the one can be done with or without the other.

In any case, although the user is free to do whatever they deem preferable, we
suggest that if FFTW and/or CUDA are present it would be beneficial to be used,
in order to get the full potential out of FLCC. Further details on installation
issues can be found in the README file that comes with the package and in
the makefile comments.

Since version 1.5, FLCC routines come in two versions, i.e. single and double-
precision versions. During installation, both versions are installed by default.
Nevertheless, by simply uncommenting a line in the makefile, it is possible that
only the single or double-precision version be installed. Refer to the README
file and the makefile’s comments for further information.

A final issue on installation concerns the Matlab interface. In order for the
executable mex files to be produced, the code to be linked to them must be
position independent. Static libraries such as FFTW may therefore fail to link,
causing installation to fail as well. If that is the case, the user needs to recompile
those libraries, making them position independent. This is done with the flag
-fPIC in the compiler. Refer to Matlab mex documentation for further details
on the subject.

5.2 Compiling Instructions

The FLCC Library is an API on C (or C++) language, so the source files using
it should be of .c or .cpp format and should be compiled by a suitable C or C++
compiler (for example gcc or g++). Also, they can be of .cu format and can
be compiled by nvcc (which are the CUDA format and compiler respectively).
Note that since FLCC uses the CUFFT library (which is a CUDA library), if
you don’t compile with nvcc then you will have to inform the compiler about
the location of CUFFT, except of course if you have chosen to install without it.

We here remind that, in its full form, FLCC uses the following libraries:

23

• Pthreads (any version)

• FFTW version 3.x with threads (both the single and double-precision
versions)

• CUFFT (any version)

Thus, during compiling your programs, linking these libraries is necessary (or
at least those which have been included during installation). You don’t need
though to include header files of these libraries in your code. Linking them
during compiling would be enough.

Finally, to compile with the FLCC Library you need to:

• Include in your code the file flcc.h (it can be found in folder inc under
FLCC package’s main folder)

• When compiling, link with -lflcc (in order to link with the file libflcc.a
situated in folder lib of FLCC package’s main folder)

Be sure to state the include path to the header file (flcc.h) and the library path
to the library file (libflcc.a). Then you will be ready to compile, which in a Linux
system is done as follows (in this example with the use of gcc compiler):

gcc foo . c −o foo − l f l c c −l p thread − l f f t w 3 f − l f f tw 3
−l f f tw3 f_th r ead s −l f f tw3_threads −lm − l c u f f t

where foo.c is the source file that uses the FLCC Library and foo is the produced
executable file. The paths to the header file and the library file could have
also been stated here, by the use of flags -I and -L respectively, immediately
followed by the according paths. Needless to say that if FLCC has been installed
without FFTW and/or CUDA, the corresponding library should be missing
from the above command. The same holds if only the single or double-precision
version is installed; in that case, only FFTW’s corresponding version (single or
double-precision) is needed.

Finally, using FLCC’s Matlab interface in your Matlab scripts is a rather
straightforward task. After installation, folder mex/bin under the package’s
main folder will contain the executable mex files implementing FLCC’s Matlab
functions. As long as Matlab’s path points to them, FLCC’s Matlab functions
can be used directly from your scripts. Refer to Matlab documentation on how
to run Matlab programs for further information.

5.3 Running Issues

When running programs with FLCC Library, one should have in mind the
following:

24

• FLCC does not directly support the computation of correlation (cross- or
auto-). This was done on purpose, since convolution can be used in this case
instead, by just rearranging the template array. More specifically, executing
convolution with a template that is reversed along every dimension is
identical to executing correlation. So the user can effectively use the
convolution functions for performing correlations, passing as an argument
the reversed template instead. In the same manner, passing a reversed
template as an input to the LCC computation routines would produce
locally normalized convolution.

• When the library executes on a GPU device, it doesn’t select by itself the
optimal device (in case more than one devices are existent and supported),
but uses whichever device was previously set by the program. If no device
had been explicitly selected before, the library selects the one labeled as 0.
So, for maximum performance, the user should set the fastest device to be
used before calling any library functions. This is to be concerned only if
the system includes more than one devices. If only one GPU exists, then
it will be selected automatically by the library routines and no specific
action is required by the user.

• As it has already been mentioned, FLCC uses the FFTW Library. Thus,
the user can accelerate the time performance of the planning functions
by taking advantage of the wisdom feature of FFTW. To be more precise,
FFTW accumulates information as it executes and that information (called
wisdom) is used over and over again, increasing planning time performance
as the program proceeds. The user can also save and import wisdom from
previous programs. So, as FFTW accumulates wisdom and becomes faster,
FLCC becomes faster too. To conclude, if you use FFTW independently, we
strongly recommend to consider reusing the wisdom accumulated, since it
will increase planning performance significantly. See FFTW documentation
for further detail of this subject. Of course, this is not to be taken into
consideration when FLCC is installed without FFTW.

25

Chapter 6

Example Code

6.1 Example 1

The following example is an LCC computation of a single 2D image of single-
precision using the FLCC Library. In the planning part, only the algorithms
that use a GPU are tested.

#include <f l c c . h>

f l c c S i z e imSize , temSize ;
int I_SIZE , T_SIZE , S_SIZE ;

imSize . h = 1000 ;
imSize .w = 1500 ;
temSize . h = 50 ;
temSize .w = 40 ;

I_SIZE = imSize . h ∗ imSize .w;
T_SIZE = temSize . h ∗ temSize .w;
S_SIZE = (imSize . h+temSize . h−1)∗(imSize .w+temSize .w−1);

f l c cP l an plan ;
f l c cR e s u l t r ;

r = lcorr_plan_f (&plan , 2 , imSize , temSize ,
FLCC_SINGLE, FLCC_DEVICE) ;

i f (r != FLCC_SUCCESS)
e x i t (1) ;

26

// .

f loat ∗ image ;
f loat ∗ templat ;
f loat ∗ l c c ;

image = (f loat ∗) f l c c_mal l oc (s izeof (f loat)∗ I_SIZE) ;
templat = (f loat ∗) f l c c_mal l oc (s izeof (f loat)∗T_SIZE) ;
l c c = (f loat ∗) f l c c_mal l oc (s izeof (f loat)∗S_SIZE) ;

r = lcorr_exec_f (plan , image , templat , l c c , 1) ;

i f (r != FLCC_SUCCESS)
e x i t (1) ;

// .

r = lcor r_dest roy_f (&plan) ;

i f (r != FLCC_SUCCESS)
e x i t (1) ;

f l c c_ f r e e (image) ;
f l c c_ f r e e (templat) ;
f l c c_ f r e e (l c c) ;

6.2 Example 2

The following example is the LCC computation of a stream of 20 3D images of
double-precision using the FLCC Library. In the planning part, all the available
algorithms are tested.

#include <f l c c . h>

f l c c S i z e imSize , temSize ;
int I_SIZE , T_SIZE , S_SIZE ;

imSize . h = 100 ;
imSize .w = 150 ;
imSize . d = 200 ;
temSize . h = 10 ;
temSize .w = 15 ;
temSize . d = 10 ;

27

I_SIZE = imSize . h ∗ imSize .w ∗ imSize . d ;
T_SIZE = temSize . h ∗ temSize .w ∗ temSize . d ;
S_SIZE = (imSize . h+temSize . h−1)∗(imSize .w+temSize .w−1)∗

(imSize . d+temSize . d−1);

f l c cP l an plan ;
f l c cR e s u l t r ;

r = lcorr_plan_d (&plan , 3 , imSize , temSize ,
FLCC_STREAM, FLCC_ANY) ;

i f (r != FLCC_SUCCESS)
e x i t (1) ;

// .

double ∗ image ;
double ∗ templat ;
double ∗ l c c ;

image =(double ∗) f l c c_mal l oc (s izeof (double)∗ I_SIZE ∗20) ;
templat=(double ∗) f l c c_mal l oc (s izeof (double)∗T_SIZE) ;
l c c =(double ∗) f l c c_mal l oc (s izeof (double)∗S_SIZE ∗20) ;

r = lcorr_exec_d (plan , image , templat , l c c , 2 0) ;

i f (r != FLCC_SUCCESS)
e x i t (1) ;

// .

r = lcorr_destroy_d (&plan) ;

i f (r != FLCC_SUCCESS)
e x i t (1) ;

f l c c_ f r e e (image) ;
f l c c_ f r e e (templat) ;
f l c c_ f r e e (l c c) ;

6.3 Example 3

The following example is the convolution computation of a single 3D image
of single-precision using the FLCC Library. In the planning part, only the

28

algorithms that run on the CPU (or CPUs) are tested.

#include <f l c c . h>

f l c c S i z e imSize , temSize ;
int I_SIZE , T_SIZE , S_SIZE ;

imSize . h = 150 ;
imSize .w = 200 ;
imSize . d = 50 ;
temSize . h = 12 ;
temSize .w = 10 ;
temSize . d = 4 ;

I_SIZE = imSize . h ∗ imSize .w ∗ imSize . d ;
T_SIZE = temSize . h ∗ temSize .w ∗ temSize . d ;
S_SIZE = (imSize . h+temSize . h−1)∗(imSize .w+temSize .w−1)∗

(imSize . d+temSize . d−1);

f l c cP l an plan ;
f l c cR e s u l t r ;

r = conv_plan_f (&plan , 3 , imSize , temSize ,
FLCC_SINGLE, FLCC_HOST) ;

i f (r != FLCC_SUCCESS)
e x i t (1) ;

// .

f loat ∗ image ;
f loat ∗ templat ;
f loat ∗conv ;

image = (f loat ∗) f l c c_mal l oc (s izeof (f loat)∗ I_SIZE) ;
templat = (f loat ∗) f l c c_mal l oc (s izeof (f loat)∗T_SIZE) ;
conv = (f loat ∗) f l c c_mal l oc (s izeof (f loat)∗S_SIZE) ;

r = conv_exec_f (plan , image , templat , conv , 1) ;

i f (r != FLCC_SUCCESS)
e x i t (1) ;

// .

r = conv_destroy_f (&plan) ;

29

i f (r != FLCC_SUCCESS)
e x i t (1) ;

f l c c_ f r e e (image) ;
f l c c_ f r e e (templat) ;
f l c c_ f r e e (conv) ;

6.4 Example 4

Here we present a simple example of the Matlab interface of FLCC. The following
could be part of a Matlab m-file. It computes the convolution between a 2D
image and a template of single-precision. Note that the planning is implicitly
done with FLCC_SINGLE and FLCC_ANY.

img = s i n g l e (rand (1 000 , 500)) ;
tem = s i n g l e (rand (1 6 , 1 6)) ;

plan = conv_plan (s ize (img) , s ize (tem)) ;
con = conv_exec (plan , img , tem) ;
conv_destroy (plan) ;

6.5 Example 5

Here we present an example of the Matlab interface of FLCC. The following
could be part of a Matlab m-file. It computes the LCC between a stream of 10
3D images and the same template, all being of double-precision. It demonstrates
the usage of cell arrays to denote streaming.

imgSize = [100 50 1 0 0] ;
temSize = [8 8 8] ;
imCount = 10 ;

img = c e l l (1 , imCount) ;
for i =1: imCount

img{ i } = rand (imgSize) ;
end
tem = rand (temSize) ;

plan = lcorr_plan (imgSize , temSize , . . .
'FLCC_STREAM ' , 'FLCC_DEVICE ' , ' double ') ;

l c c = lcor r_exec (plan , img , tem) ;

30

l c o r r_des t roy (plan , ' double ') ;

31

	Introduction
	Data Types
	Type flccPlan
	Type flccSize
	FLCC Computation Types
	FLCC Platforms
	Type flccResult

	Functions
	lcorr_plan_f / lcorr_plan_d
	conv_plan_f / conv_plan_d
	lcorr_exec_f / lcorr_exec_d
	conv_exec_f / conv_exec_d
	lcorr_destroy_f / lcorr_destroy_d
	conv_destroy_f / conv_destroy_d
	flcc_malloc
	flcc_free

	Matlab Interface
	lcorr_plan and conv_plan
	lcorr_exec and conv_exec
	lcorr_destroy and conv_destroy

	Install, Compile and Run
	Installation Instructions
	Compiling Instructions
	Running Issues

	Example Code
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

