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Abstract—The convolution and correlation between digital 

images constitute two of the most basic and significant operations 

in the field of digital image processing. Their considerably high 

computational complexity, though, combined with current 

demands concerning time performance and arithmetic precision, 

has been a constant challenge in scientific research. The above 

problem becomes exacerbated in cases where there is also the 

need for local normalization of the coefficients and/or the 

number of the image dimensions increases. In this paper we 

describe a set of algorithmic methods to efficiently deal with the 

problem, without sacrificing the arithmetic precision of the 

computations. Furthermore, we present and analyze the FLCC 

library, a powerful yet handy computational tool, which 

implements the aforementioned methods whilst utilizing the 

strengths of modern efficient parallel architectures (multi-core 

systems, GPUs) in order to achieve fast computation of 

convolutions and correlation coefficients between 2D and 3D 

images. We conclude with indicative experimental results, which 

demonstrate the usefulness and efficiency of the FLCC library. 
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I.  INTRODUCTION 

Convolution is without doubt one of the most important and 
fundamental mathematical operations in the field of digital 
image processing, as well as in general signal processing and 
control systems theory. Discrete ν-dimensional convolution 
between real signals   and   is defined in (1). 

                     

    

 (1) 

The significance of convolution is of both theoretical and 
practical nature. Convolution is found in the center of Linear 
and Shift Invariant (LSI) systems description. In fact, the 
output of such a system is precisely equal to the convolution 
between its input and its impulse response [1]. Moreover, as far 
as digital images are concerned, convolution represents the 
filtering process between an image and an image filter in the 
spatial domain [2]. As such, convolution is frequently used as a 
basic computational block in several image analysis processes, 
such as pattern recognition, object detection, feature extraction 
and many more [3][4]. 

A similar to convolution and at the same time equally 
important mathematical operation is correlation (also known as 
cross-correlation). Discrete ν-dimensional correlation between 
real signals   and   is defined in (2). 

                     

    

 (2) 

Correlation is used to express the similarity degree between 
a signal and a signal template in every possible relative 
positioning. That way a "best match" for the template can be 
determined within the signal. An even more accurate similarity 
measure can be obtained if the template and each overlapping 
signal section are normalized to zero mean and unit standard 
deviation before correlation is performed. The above leads to 
the definition of the so called table of correlation coefficients 
with local normalization (or simply Local Correlation 
Coefficients – LCCs). In (3) we express the LCC between a 
template   and the overlapping signal section (or panel)   – 
both of    elements – in the case of a 2-dimensional digital 
signal (such as an image). By      and      we denote 
respectively the mean and the standard deviation of   
(similarly for  ). 

 

       
 

  

                           

        
 (3) 

Due to the well-known Cauchy-Schwartz inequality, 
       will always fall within the close interval [-1, 1], thus 
often being interpreted as the cosine of the "angle" between the 
panel and the template. That practically means that a 
coefficient of value 1 will denote a perfect proportional match 
between the selected panel and the template, while a coefficient 
of value -1 will denote a perfect, but inverse, match. Of course, 
a zero coefficient indicates a complete mismatch between the 
two or, as otherwise stated, the panel being orthogonal to the 
template. Therefore, thanks to their capability of effectively 
indicating local similarity, LCCs find numerous applications in 
digital image processing such as template or pattern matching, 
image registration, change or motion detection, to name only a 
few [5][6]. 
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Unfortunately, usefulness does not come at no cost. Both 
convolution and LCCs have always been considered operations 
of high computational intensity, often rendering their usage 
rather troublesome. Especially in the case of LCCs, the local 
normalization characteristic increases the computational 
requirements significantly, thus discouraging their usage 
against unnormalized correlation. The above problem is far 
more evident in situations of high processing requirements, 
such as applications involving images of high resolution and/or 
3 dimensions or real-time processing of images (e.g. real-time 
video processing). 

Several efforts have been made towards the direction of 
developing methods for fast and efficient calculation of the 
operations under consideration. In the case of convolution, the 
well-known convolution theorem has been widely used to 
reduce the arithmetic complexity to a minimum. In particular, 
this theorem expresses convolution in the Fourier – or 
frequency – domain, enabling the usage of the efficient Fast 
Fourier Transform (FFT) algorithm for its calculation [1]. Still 
though, the performance benefit of this method evaporates 
when small templates are concerned. Another promising 
approach for multi-dimensional convolution in particular, 
known as separable convolution, takes advantage of the 
separability of the template, managing to reduce a multi-
dimensional convolution to a series of one-dimensional 
convolutions. However, this approach is not equally effective 
for all templates, since it is highly dependent on the degree of 
the template's separability.  

The case of LCCs has seemed to be even more challenging. 
Several methods have been proposed that try to reduce 
computation time by approximating the result, such as making 
ad-hoc assumptions about the image properties or relaxing the 
requirement of locality. Others attempt to adapt the techniques 
developed for fast convolution to the computation of LCCs, 
such as expressing the computation to a certain degree in the 
Fourier domain. An effective method is presented in [7], where 
the computational load is reduced via the usage of FFTs and 
precomputed integrals over the image, the latter being a 
technique first introduced in [8] for rapid low-pass image 
filtering. However, major part of the computation is still done 
in the spatial domain since the LCCs are not yet fully 
expressed in the Fourier domain. In [9], the method of 
precomputed integrals is further exploited, managing to reduce 
computation time substantially. However, the method proposed 
is still approximate, depending crucially on the specific form of 
the template. A fully Fourier-based method for calculating the 
LCCs was recently introduced in [10], with a full algorithmic 
description in [11]. The proposed algorithm handles effectively 
large templates and computations on a stream of images but, as 
with FFT based convolution, performs rather poorly for small 
templates.  

Alongside addressing the problem by algorithmic means, 
notable efforts have been made in taking advantage of the 
computational capability of various hardware architectures in 
order to achieve accelerated computation. Naturally, hardware 
developments over the years have been increasing performance 
continuously. For the computation of convolution and LCCs, 
parallel architectures seem to be particularly suitable, since 
these two operations exhibit considerable parallelization 

potential. Apart from the more traditional parallelization 
architectures, such as multi-CPU systems, array processors 
(many-cores) have been employed for effectively carrying out 
the computation. CUDA-enabled Graphics Processing Units 
(GPUs) are used in [11], [12] and [13] for convolution 
implementations and in [11], [14], [15] and [16] for LCC 
implementations, together with various algorithmic techniques, 
in order to produce worthy results.  

In this paper we attempt to develop a unified scheme in 
addressing the computation of convolution and LCCs on digital 
images. We present the FLCC library, a computational tool 
which provides a simple yet powerful interface for fast 
computation of convolution and LCCs on a wide range of 
practical cases. Our approach is based on three levels. Firstly, 
we utilize a set of efficient algorithms, reducing arithmetic 
complexity to a minimum. Secondly, we exploit top-notch 
modern parallel architectures, namely multi-core processors 
and CUDA-enabled GPUs, in order to effectively carry out the 
computations. Thirdly, we combine the advantages of the 
different algorithmic and architectural approaches under an 
easy-to-use and portable unifying scheme, namely the plan-
execute model.  

In section II we present the full set of algorithms used in 
FLCC library. In section III we describe the interface and the 
various characteristics of FLCC, together with hardware 
implementation and details on the plan-execute model. We 
conclude with indicative experimental results in section IV and 
some final remarks in section V. 

II. ALGORITHMS 

The first level of our approach consists of developing 
efficient algorithms for the calculation of both convolution and 
LCCs. We make no previous assumptions on the content of the 
two signals – apart from their being real-valued – and so we are 
interested in algorithms that guarantee the correct result in any 
case; in other words we do not accept approximations or 
numerical sacrifices. For this purpose we develop two separate 
algorithmic methods for each operation; we refer to them as 
“direct method” and “Fourier domain method”, the former 
addressing the computation in the spatial domain while the 
latter doing so in the frequency domain.  

A. Direct Method 

In the case of convolution, the direct method is quite 
straightforward; it simply consists of calculating the result 
directly as it is suggested by its definition in (1). That is, we 
consider the filter (typically the smaller in size of the two 
signals) to be sliding along every dimension. In each position 
we simply calculate the dot product between the filter and the 
according panel, obtaining the convolution value for that 
position. This method, albeit straightforward, exhibits certain 
properties that, if properly exploited, can lead to respectable 
performance. Firstly, it is highly parallelizable, up to pixel 
level from the writer’s point of view, i.e. every convolution 
value can be calculated totally independently from the others. 
Secondly, the method shows high space locality, which can 
facilitate efficient memory caching. In section III we further 
explain the way in which these properties are exploited in the 
implementation level of FLCC. 



In the case of LCCs, things are less straightforward though. 
Attempting to directly perform the computation guided by the 
definition in (3) poses difficulties which stem from the need of 
calculating the local mean and standard deviation for every 
single panel in the signal. To do that in an efficient way in the 
spatial domain, we need to effectively reformulate the LCC 
definition formula. We first note that the template   can be pre-
normalized once for all in the beginning. Typically the 
template will be small enough for this operation to be of trivial 

cost. Denote by    this normalized template. We progressively 
rewrite (3) as shown below. 
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(5) 

 
       

              

      
 

    
 
  

          
 
 

(6) 

Note that              since we have assumed    to be of 

zero mean. Note also that calculating the LCC by (4) would 
require three separate passes over each panel while by (6) the 
entire calculation can be performed within a single pass over 
each panel. Therefore, (6) provides us with the desired direct 
method of efficiently computing LCCs in the spatial domain. 

B. Fourier Domain Method 

This method consists of performing the major part of the 
calculation in the Fourier (frequency) domain. To achieve that 
for convolution, we base on the well-known convolution 
theorem, which is stated in (7). 

                 (7) 

In (7),      denotes the Fourier transform of signal   
(same for  ). This theorem provides us with an efficient way of 
calculating convolution. In particular, we can obtain 
convolution between signals   and   by first Fourier-
transforming them, then calculating the element-wise complex 
product of the transforms in the Fourier domain and finally 
transforming the product back to the spatial domain. The 
efficiency of this method arises from the possibility to perform 
the transforms via the highly efficient FFT algorithm. 
Furthermore, we have assumed that   and   are real-valued 
(since they represent digital images). As it is well-known, the 
Fourier transform of a real-valued signal exhibits conjugate 
symmetry, i.e. half of its values can be expressed as the 
complex conjugate of the other symmetrical half. The above 
property can be further exploited in a way that the necessary 
operations to perform a real-valued FFT be reduced by 
approximately half compared to a regular complex FFT 
[11][18]. Referring to the real-valued FFT as “half-FFT”, we 
easily see that the whole operation can be completed with only 
1.5 FFTs (i.e. 3 half-FFTs). Finally, one more optimization can 

be considered in the – quite frequent – case where a stream of 
images needs to be processed by the same filter. In that case, to 
which we refer as “streaming”, the FFT of the filter need only 
be calculated once; assuming the number of images in the 
stream is sufficiently large, we end up with convolution by just 
1 FFT (i.e. 2 half-FFTs) per image. 

Moving the above method to the case of LCCs is not trivial 
though. We present here a variation of the algorithm firstly 
described in detail in [11]. Denote by   the signal to be 
processed (typically an image) and by   the processing 
template of size   . We describe every panel   in   of size    
as in (8). 

                          (8) 

Here,    is the spatial support of the template, i.e. a signal 
of the same size as the template having units as values. With 
(8) in mind, we rewrite (6) as in (9). 

 
       

    

         
 
  

      
 

 
(9) 

                        

   

 (10) 

                          

   

 (11) 

                        

   

 (12) 

In (9) we manage to express the whole LCC table in terms 
of three correlations, described in (10), (11) and (12). But since 
correlation is essentially a convolution where one of the two 
signals has been reversed along every dimension (as it follows 
by their definitions), it is possible to obtain these three 
correlations by making use of the convolution theorem in (7). 
We are therefore in the position now to present the Fourier 
domain method of calculating the LCCs.  

 Perform the FFTs of signals  ,   ,    and   . 

 Calculate the element-wise complex products 

         ,            and          . 

 Perform the inverse FFTs of the three products to 

obtain     ,       and      respectively. 

 Combine the three correlations element-wise as in (9). 

It is therefore evident that the full LCC computation can be 
effectively performed via 7 FFTs. Note though that in the 
spatial domain all the quantities involved are real-valued. That 
means the 7 FFTs can be efficiently reduced to only 3.5 FFTs. 

Furthermore, in the frequent case of streaming, the FFTs of    
and    need only be computed once for the entire stream. This 
finally leads to an efficient LCC full computation with just 2.5 
FFTs per image. 



C. Analysis and Comparison 

Denote by    the size of the convolution/LCC result and by 

   the size of the filter/template. In Table I we present the 
arithmetic complexity in terms of number of multiplications for 
each algorithm we have previously described.  

In calculating the complexity, we took into account the 
convention that a complex FFT of   points takes no more than 
       operations [11]. We also accepted that the 
complexity of the Fourier domain method is dominated by the 
FFTs, disregarding the additive linear factor contributed by the 
element-wise operations (complex product, division, root 
extraction, etc.).  

Observing the arithmetic complexities of Table I leads us to 
some particularly interesting conclusions. Firstly, we note that 

the complexity of the direct method is of class         while 

the complexity of the Fourier domain method is of class 

          . The class of each method is the same for both 

convolution and LCCs; the latter exhibit higher constant 
coefficients which account for the additional need for local 
normalization. Secondly, the number of operations of the direct 
method shows strong (proportional) dependence on the size of 
the template, while in the Fourier domain method the number 
of operations is determined primarily by the size of the image 
(assuming the typical case where the image is much larger than 
the template), its performance being practically independent by 
the size of the template. Therefore, the theoretical determinant 
of which method is more efficient for each case is the 

comparison between    and the “critical size”   
    , as it 

follows: 

 When      
     the direct method performs better. 

 When      
     the Fourier domain method 

performs better. 

The critical size designates the template size for which both 
methods perform equivalently and it can be theoretically 
estimated by equating the arithmetic complexities of the two 
methods. In Table II we show the theoretically estimated value 

of   
     for each possible case. We denote by    the size of the 

image and in our calculations we assume that      . In 

section III we demonstrate how we exploit the above 
conclusion for developing a universal scheme of efficient 
calculation of convolution and LCCs in FLCC library. 

TABLE I.  ARITHMETIC COMPLEXITY OF ALGORITHMS 

Operation 
Algorithmic Method 

Direct 
Fourier 

(single image) 

Fourier 

(streaming) 

Convolution                          

LCCs                               

TABLE II.  CRITICAL TEMPLATE SIZES 

Operation 
Computational Case 

Single image  Streaming 

Convolution                 

LCCs                     

III. FLCC LIBRARY 

Apart from the algorithmic methods described in section II, 
another way to further accelerate the computation of 
convolution and LCCs is to utilize the potential of modern 
parallel computer architectures. Among the wide variety of 
currently available architectures we selected to work on two 
particular platforms, namely multi-core processors and 
Graphics Processing Units (GPUs), the latter being specifically 
those manufactured by NVIDIA. The choice was made after 
taking into account their computational power, effectiveness 
regarding the calculations that concern us, wide availability, 
affordability, relatively easy-to-learn programmability and the 
existence of already established optimized libraries providing 
the functions for performing FFTs. 

On multi-core processors multithreading was done using 
the POSIX threads API (or just pthreads) [17] and all FFTs 
were made possible using version 3 of FFTW library [18]. 
Likewise, on GPUs the programming was done with NVIDIA's 
CUDA programming environment [19] and the FFT functions 
were provided by the CUFFT library [20], again by NVIDIA. 

A. FLCC Library Presentation 

As a next step to theoretical algorithmic development, we 
proceeded in creating the FLCC library, a powerful and 
versatile computational tool capable of a holistic approach 
towards the fast calculation of convolution and LCCs. FLCC is 
a library for the C (or C++) programming language and it is 
available for use in the form of a complete software package, 
easy-to-use and hopefully practically useful. Its goal is to 
provide its user with an interface to facilitate the execution of 
the operations under consideration. Its efficiency is achieved in 
three ways. Firstly, it contains a collection of functions each 
implementing one of the algorithms described in section II. 
Secondly, it utilizes the strengths of the chosen parallel 
architectures along with those of established libraries for the 
efficient execution of FFTs. It should be noted that the various 
algorithms and architectures can achieve different efficiency, 
relative to the type and size of the problem, as already shown in 
section II. Thus, finally, in order to combine every asset for the 
best possible result, the library uses a versatile, open to 
expansion plan-execute mechanism, similarly to the FFTW and 
CUFFT libraries. At the time of syntax of this paper, FLCC 
library is at version 1.3 (FLCC v1.3). Despite the library's 
being fully operational, it is still at an early stage and will be 
complemented with new features in the future. A complete list 
of FLCC's current features follows: 

 Fast computation of convolution for 2D and 3D images 
and filters of any size. 

 Fast computation of locally normalized correlation 
coefficients distributions (LCCs) for 2D and 3D 
images and templates of any size. 

 Single precision arithmetic. 

 Accelerated computation of convolution and LCCs 
between a stream of images and the same 
filter/template. 

 Capability of parallel computation either on a multi-
core CPU or a (currently one) GPU. 



Finally, we report that FLCC v1.3 is supported for use on 
UNIX/Linux and MS Windows (via Cygwin) systems. Each 
new version is freely available for installation and use from the 
webpage http://autogpu.ee.auth.gr/. FLCC is distributed under 
the FreeBSD license, complete with full documentation. 

B. FLCC Interface Description 

Central idea to the design of FLCC is to not relate its user 
with practical issues concerning the choice of an appropriate 
algorithm or architecture and to provide them with a simple 
and succinct API that is responsible for all the work; from 
making the correct choice, to performing the computation. 
Version 1.3 of FLCC library provides six main functions for 
the computation of convolution and LCCs. In addition, there 
are two more memory management functions intended for the 
allocation and deallocation of memory for the input and output 
tables, which should be used instead of the traditional ones. 
Note that as part of the documentation of FLCC there is a 
detailed up-to-date manual [21], fully describing the API. An 
overview of FLCC’s API is shown in Table III. 

A short description of the plan-execute mechanism used by 
FLCC would be the following. Initially, the user calls a planner 
function in which they describe the problem (number of 
dimensions, size of each dimension, single image or 
streaming). The planner function processes that input and 
decides on the best algorithm-architecture combination for the 
calculations. The planner proceeds to creating an object called 
plan, which includes all the information pertaining to this 
choice. Afterwards, the user calls an executor function that uses 
the above plan and the input images and returns the resulting 
output table. The advantage of this approach is that the 
execution can be performed for an unrestricted number of 
times (though for the same type of computation and size of 
images) while the planning need only be done once for each 
different problem. This can lead to substantial efficiency in the 
(quite frequent) case of several calculations of the same type. 
Finally, there exists another type of function that deallocates all 
the resources occupied by the plan. It is intended to be called 
when the plan is no more needed. 

C. Parallel Implementation of Direct Method 

We will analyze the direct method for both convolution and 
LCCs alongside because, as we saw in section II, they are 
similar in that they both have to do with a sweep of the 
filter/template over the image and the execution of some sort of 
operation between the filter/template and the overlapping 
panel. Another thing they have in common is their high 
parallelizability. Every output element can be calculated 
independently from all others, by a different thread, just by 
knowing the filter/template and the corresponding panel. 

TABLE III.  FLCC API FUNCTIONS 

Operation 
Computational Stage 

Planning Execution Plan deallocation 

Convolution conv_plan() conv_exec() conv_destroy() 

LCCs lcorr_plan() lcorr_exec() lcorr_destroy() 

Memory Management 

flcc_malloc() flcc_free() 

In the case of a CPU with one or more cores the 
parallelization is done by creating threads using the pthreads 
library. The number of threads created is dictated by the user 
during FLCC’s installation and of course it is recommended to 
be set equal to the number of the CPU cores available. Each 
thread is given access to the filter/template and the padded 
image and it is charged with calculating its share of output 
elements. There has also been an effort for optimization. The 
majority of filters/templates found in practical problems are of 
equal dimension sizes (i.e. square or cubic) and those managed 
by the direct method have a relatively small size. This lends the 
opportunity for an optimization which lies on the idea of hard-
coding the few most frequent cases, allowing among others for 
explicit loop unrolling. Indeed, apart from the general, naive 
thread functions that perform convolution and LCCs, FLCC 
retains optimized hard-coded versions of that general function 
that refer to certain filter/template sizes (2x2 up to 32x32 for 
2D and 2x2x2 up to 10x10x10 for 3D). Since the size is 
already known it is possible to fully unroll the iteration loop for 
each panel. Regarding the optimized thread functions, this is 
done with a smart use of macro-instructions. We define a 
macro-instruction that does the work of the thread function and 
the sizes of the filter/template’s dimensions are given as 
arguments. During installation multiple calls of this macro-
instruction are compiled for the different sizes we discussed 
and since the number of iterations for each case is a constant 
number the compiler fully unrolls the loop. This way, we 
achieve optimized performance for the majority of common 
cases while it is ensured that the calculation is always 
performed correctly even for the less common ones. 

Given the capabilities of GPUs and CUDA, it is possible to 
start as many CUDA threads as the number of output elements; 
each thread executing the kernel function that calculates its 
according element using the direct method. We organize 
CUDA threads to fixed-size blocks and consequently the 
blocks to a grid. We take steps though to avoid a control 
structure inside the kernel that checks whether the output 
element is within the logical limits of the output array. We do 
this by allocating more memory than needed so as to have an 
exact fit of all the blocks into this enlarged output table. After 
the calculations are done we discard the additional values. This 
whole process is incorporated during the padding process and 
thus does not affect the temporal efficiency negatively. Again, 
there has been an effort for further optimization. The primary 
memory modules of NVIDIA’s GPUs are the following three: 
the local memory private to each thread, a fast shared memory 
module present in each of the GPU’s multiprocessors that all 
threads in a block share and the larger, relatively slower global 
memory of the GPU available to all threads [19]. We perform 
caching of all the data needed by the block threads on the 
shared memory module which costs very little in time and 
ensures faster multiple accesses to the data needed. Said data 
are the filter/template and the section of the image needed by 
the block threads. Mirroring the implementation on a CPU, we 
proceed in performing full hard-coded loop unrolling in the 
common cases of filters/templates with the certain sizes we 
discussed. This time we have created a code generator using 
MATLAB that generates the code of a kernel for a given 
filter/template size. We pre-generated kernels for the sizes of 
interest that both utilize shared memory and perform full loop 

http://autogpu.ee.auth.gr/doku.php?id=flcc


unrolling to the effect we described earlier in the case of CPUs. 
The code of these kernels is pre-included in the library and it is 
compiled during installation. 

We should note that the latter method for performing loop 
unrolling is slightly faster than using macro-instructions but its 
major disadvantage is that it dramatically increases the size of 
the library’s source code, leading to high compilation times 
during installation. In the case of the CPU though, the 
difference in optimization achieved by code generators is 
negligible, so we choose to work with macro-instructions 
instead, avoiding further increasing FLCC’s source code. 

D. Parallel Implementation of Fourier Domain Method 

As we described in section II, the significant part of the 
Fourier domain method for LCCs is the computation of three 
convolutions. Therefore we describe the implementation of the 
Fourier domain method focusing on the stage of convolution. 

In the CPU implementation of the Fourier domain method 
we extensively use the established FFTW library that provides 
optimized functions for performing the 2D and 3D half-FFTs 
needed. This way the FFTs are performed at roughly half the 
time and with half the memory requirements. FFTW also 
supports multithreading as it utilizes internally the pthreads 
library. The element-wise complex multiplications are easily 
executed by sharing the workload among different threads. 
Moreover, FFTW’s functions work faster for tables whose 
dimension sizes may be expressed as small prime number 
products [18]. In order to exploit this characteristic, we expand 
each table dimension to meet this requirement. This process is 
included in the padding process and of course in the end we 
discard the additional elements of the result. A final detail is 
that after an inverse FFT by an FFTW function the signal we 
get is not the wanted signal. The latter will result after a 
division of each element of said signal with its total number of 
elements. This division is included in the element-wise 
multiplication thread function so as to be done in parallel. 

In the GPU implementation we use in the same manner 
NVIDIA’s CUFFT library for the half-FFTs. As for the 
element-wise multiplication, we created a simple kernel that 
performs it. The same also applies in this case concerning the 
time and memory space benefits of the half-FFTs, the fact that 
the FFTs are faster for tables whose sizes are small prime 
number products and the need for a division of each of the 
signal’s elements by the number of elements of the signal. So 
we act similarly by lengthening each table dimension as in [13] 
to achieve faster FFT execution and performing the division 
inside the CUDA kernel so as to be done in parallel. 

E. Streaming on GPUs 

Apart from the algorithmic benefits of streaming on the 
Fourier domain method we already discussed in section II, 
there is also the possibility of an additional optimization in the 
case of computations on a GPU using either the direct or the 
Fourier domain method. In order for data to be processed by 
the multiprocessors of a GPU, they first need to be transferred 
from RAM to the GPU’s global memory. Regarding 
computations between a stream of N images and a 
filter/template, all of the N images and the filter/template have 
to be transferred to the global memory and then N output tables 

have to be transferred back to RAM. This would be seriously 
time-consuming but CUDA offers a possibility that we can 
exploit in order to “hide” the transfer time behind the 
computation time. CUDA streams lend the opportunity of 
asynchronous concurrent execution of kernels and transferring 
of data for certain GPUs [19]. So, while the i-th output table is 
being calculated, we transfer the (i-1)-th output table back to 
RAM and the (i+1)-th image to the GPU’s global memory 
simultaneously. With this concurrency trick the only visible 
transfer times are the first image’s and the filter/template’s 
ones to the GPU and the last output table’s one back to RAM. 
In case asynchronous concurrent execution and transfer is not 
supported by the user’s GPU, the transfers and calculations are 
still performed correctly yet serially. 

F. FLCC’s Plan-Execute Model 

FLCC contains functions that implement all the different 
algorithms on both chosen parallel architectures with all 
combinations possible. During planning all of the available 
functions are called to perform calculations on random tables. 
Their individual execution times are measured with precision 
and the function to be determined the fastest is designated to 
perform the computations during the execution stage. In the 
case where one or more of these functions fail due to some 
internal error, FLCC recognizes the failure and excludes them 
from the selecting process. One final detail is that both 
FFTW’s and CUFFT’s planning stages are included in FLCC’s 
planning stage and thus do not affect the execution time. 

IV. EXPERIMENTAL RESULTS 

We present experimental results on the usage of FLCC after 
performing two different sets of experiments. Both experiments 
were carried out on a multi-core SMP system equipped with a 
CUDA-enabled GPU. The multi-core is an AMD Opteron 6168 
of totally 24 cores with a clock speed of 1.90 GHz. The GPU is 
an NVIDIA GeForce GTX 480, consisting of a total of 480 
cores and having a clock speed of 1.40 GHz.  

A. First Set of Experiments: Algorithmic Comparison 

We time the performance of every algorithm implemented 
in FLCC for a 2D image of 2000x2000 pixels against a 
template of sizes ranging from 2x2 up to 32x32 pixels. The 
results are illustrated in Fig. 1 for both convolution and LCCs 
on the multi-core and similarly in Fig. 2 on the GPU.  

The results verify our initial hypothesis, i.e. the 
performance of the direct method decreases significantly as the 
template becomes larger, while the performance of the Fourier 
domain method remains stable for all template sizes. We also 
observe the critical template sizes for each case, whose 
existence serves as the basis for the FLCC planning strategy. 
One can also notice the performance benefit (up to 
approximately 50%) introduced by the process of streaming, 
thanks to both the algorithmic and the architectural 
optimizations it allows for. Last but not least, we see that the 
utilization of high-performance parallel architectures can 
alleviate the additional computational load introduced by local 
normalization; indeed, the performance on LCCs is very close 
to the one of convolution, thus enabling their usage in cases 
where local normalization would previously be considered too 
expensive to perform. 



 

 

Figure 1.  Algorithmic performance of convolution (left) and LCCs (right) on multi-core. 

Figure 2.  Algorithmic performance of convolution (left) and LCCs (right) on GPU. 

B. Second Set of Experiments: FLCC Planning 

Having examined the performance of each algorithm-
architecture combination, we now focus on the behavior of the 
FLCC planning process. We illustrate the selections made by 
the planner functions of the FLCC interface for 2D convolution 
on a single image or a stream of images, separately on the 
multi-core in Fig. 3 and the GPU in Fig. 4 (our system’s GPU 
is circa 10 times faster than the multi-core so planning between 
them would not be of much interest). The image sizes to plan 
for range from 32x32 up to 4096x4096 pixels and the template 
sizes range from 2x2 up to 32x32 pixels. 

One can notice that, in principle, FLCC selects correctly 
according to our theoretical predictions and first set of 
experiments. Indeed, the direct method is selected for smaller 
templates while the Fourier domain method is preferred for 
larger templates. It is also noteworthy that FLCC seems to take 
correctly into account whether the computation refers to a 
single image or a stream of images, selecting the Fourier 
domain method – which as we have explained benefits 
algorithmically by the streaming – more often when streaming 
is concerned. Finally, we observe how FLCC selections take 
into account the differences between the two platforms; the 
direct method is more often selected on the GPU than on the 
multi-core, since its greater parallelizability allows it to 
perform better on a massively parallel array processor like the 
GPU. Similar results – not shown here – have also been 
obtained when planning for LCCs and can be found in [22]. 

V. CONCLUDING REMARKS 

In this paper we began by examining algorithmically the 
calculation of convolution and LCCs in both the spatial and the 
frequency domain. We described two methods that correspond 
to each domain and we referred to them as direct method and 
Fourier domain method respectively. We showed that the direct 
method is more suitable for calculations with relatively small 
filters/templates, whilst the Fourier domain method is more 
suitable for larger ones. Secondly, we examined the suitability 
of convolution and LCC calculation in a parallel environment. 
We advocated in favor of the usage of multi-cores and CUDA-
enabled GPUs, based on their computational power, 
availability and affordability. Thirdly, we explained how the 
various advantages of the different algorithmic and 
architectural approaches can be combined through the 
utilization of a plan-execute mechanism in execution time, 
leading to an efficient tackling of a wide range of practical 
cases. 

We took one step forward in developing the FLCC library, 
an efficient, easy-to-use and portable computational tool that 
makes a holistic attempt towards the practical calculation of 
convolution and LCCs. We described how FLCC implements 
each algorithm on each architecture and how the best 
algorithmic-architectural combination for each case and system 
is selected in execution time via the plan-execute mechanism. 
Finally, we presented how FLCC’s functionality is accessed 
through its interface, a minimal set of functions designed to be 
practical and easy-to-learn, without requiring any specialized 
knowledge by its user. 



 

 

Figure 3.  FLCC planning for a single image (left) and a stream of images (right) on multi-core. Cyan for direct method and magenta for Fourier domain method. 

Figure 4.  FLCC planning for a single image (left) and a stream of images (right) on GPU. Blue for direct method and red for Fourier domain method. 

Of course, as any live piece of software, current FLCC 
version 1.3 manifests its own weaknesses and limitations. 
Further development and expansion of its functionality and 
utility are possible, such as exploration and incorporation of 
new algorithms or support for new architectures and platforms. 
Examples for immediate improvement include separable 
convolution, support for double precision or utilization of more 
than one GPU concurrently. Finally, less restraining (but more 
complicated) interfaces can be added, allowing the user an 
advanced accessibility to FLCC’s internal power. 
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