
FLCC: A Library for Fast Computation of

Convolution and Local Correlation Coefficients

Georgios Papamakarios
1

gpapamak@auth.gr

Georgios Rizos
1

grizos@auth.gr

Nikos P. Pitsianis
1,2

nikos.pitsianis@eng.auth.gr

1
Department of Electrical and Computer Engineering

Aristotle University of Thessaloniki

Thessaloniki, Greece

2
Department of Computer Science

Duke University

Durham, NC, U.S.A.

Abstract—The convolution and correlation between digital

images constitute two of the most basic and significant operations

in the field of digital image processing. Their considerably high

computational complexity, though, combined with current

demands concerning time performance and arithmetic precision,

has been a constant challenge in scientific research. The above

problem becomes exacerbated in cases where there is also the

need for local normalization of the coefficients and/or the

number of the image dimensions increases. In this paper we

describe a set of algorithmic methods to efficiently deal with the

problem, without sacrificing the arithmetic precision of the

computations. Furthermore, we present and analyze the FLCC

library, a powerful yet handy computational tool, which

implements the aforementioned methods whilst utilizing the

strengths of modern efficient parallel architectures (multi-core

systems, GPUs) in order to achieve fast computation of

convolutions and correlation coefficients between 2D and 3D

images. We conclude with indicative experimental results, which

demonstrate the usefulness and efficiency of the FLCC library.

Keywords-fast convolution; normalized correlation coefficients;

multi-core processors; graphics processing units

I. INTRODUCTION

Convolution is without doubt one of the most important and
fundamental mathematical operations in the field of digital
image processing, as well as in general signal processing and
control systems theory. Discrete ν-dimensional convolution
between real signals and is defined in (1).

 (1)

The significance of convolution is of both theoretical and
practical nature. Convolution is found in the center of Linear
and Shift Invariant (LSI) systems description. In fact, the
output of such a system is precisely equal to the convolution
between its input and its impulse response [1]. Moreover, as far
as digital images are concerned, convolution represents the
filtering process between an image and an image filter in the
spatial domain [2]. As such, convolution is frequently used as a
basic computational block in several image analysis processes,
such as pattern recognition, object detection, feature extraction
and many more [3][4].

A similar to convolution and at the same time equally
important mathematical operation is correlation (also known as
cross-correlation). Discrete ν-dimensional correlation between
real signals and is defined in (2).

 (2)

Correlation is used to express the similarity degree between
a signal and a signal template in every possible relative
positioning. That way a "best match" for the template can be
determined within the signal. An even more accurate similarity
measure can be obtained if the template and each overlapping
signal section are normalized to zero mean and unit standard
deviation before correlation is performed. The above leads to
the definition of the so called table of correlation coefficients
with local normalization (or simply Local Correlation
Coefficients – LCCs). In (3) we express the LCC between a
template and the overlapping signal section (or panel) –
both of elements – in the case of a 2-dimensional digital
signal (such as an image). By and we denote
respectively the mean and the standard deviation of
(similarly for).

 (3)

Due to the well-known Cauchy-Schwartz inequality,
 will always fall within the close interval [-1, 1], thus
often being interpreted as the cosine of the "angle" between the
panel and the template. That practically means that a
coefficient of value 1 will denote a perfect proportional match
between the selected panel and the template, while a coefficient
of value -1 will denote a perfect, but inverse, match. Of course,
a zero coefficient indicates a complete mismatch between the
two or, as otherwise stated, the panel being orthogonal to the
template. Therefore, thanks to their capability of effectively
indicating local similarity, LCCs find numerous applications in
digital image processing such as template or pattern matching,
image registration, change or motion detection, to name only a
few [5][6].

mailto:gpapamak@auth.gr
mailto:nikos.pitsianis@eng.auth.gr

Unfortunately, usefulness does not come at no cost. Both
convolution and LCCs have always been considered operations
of high computational intensity, often rendering their usage
rather troublesome. Especially in the case of LCCs, the local
normalization characteristic increases the computational
requirements significantly, thus discouraging their usage
against unnormalized correlation. The above problem is far
more evident in situations of high processing requirements,
such as applications involving images of high resolution and/or
3 dimensions or real-time processing of images (e.g. real-time
video processing).

Several efforts have been made towards the direction of
developing methods for fast and efficient calculation of the
operations under consideration. In the case of convolution, the
well-known convolution theorem has been widely used to
reduce the arithmetic complexity to a minimum. In particular,
this theorem expresses convolution in the Fourier – or
frequency – domain, enabling the usage of the efficient Fast
Fourier Transform (FFT) algorithm for its calculation [1]. Still
though, the performance benefit of this method evaporates
when small templates are concerned. Another promising
approach for multi-dimensional convolution in particular,
known as separable convolution, takes advantage of the
separability of the template, managing to reduce a multi-
dimensional convolution to a series of one-dimensional
convolutions. However, this approach is not equally effective
for all templates, since it is highly dependent on the degree of
the template's separability.

The case of LCCs has seemed to be even more challenging.
Several methods have been proposed that try to reduce
computation time by approximating the result, such as making
ad-hoc assumptions about the image properties or relaxing the
requirement of locality. Others attempt to adapt the techniques
developed for fast convolution to the computation of LCCs,
such as expressing the computation to a certain degree in the
Fourier domain. An effective method is presented in [7], where
the computational load is reduced via the usage of FFTs and
precomputed integrals over the image, the latter being a
technique first introduced in [8] for rapid low-pass image
filtering. However, major part of the computation is still done
in the spatial domain since the LCCs are not yet fully
expressed in the Fourier domain. In [9], the method of
precomputed integrals is further exploited, managing to reduce
computation time substantially. However, the method proposed
is still approximate, depending crucially on the specific form of
the template. A fully Fourier-based method for calculating the
LCCs was recently introduced in [10], with a full algorithmic
description in [11]. The proposed algorithm handles effectively
large templates and computations on a stream of images but, as
with FFT based convolution, performs rather poorly for small
templates.

Alongside addressing the problem by algorithmic means,
notable efforts have been made in taking advantage of the
computational capability of various hardware architectures in
order to achieve accelerated computation. Naturally, hardware
developments over the years have been increasing performance
continuously. For the computation of convolution and LCCs,
parallel architectures seem to be particularly suitable, since
these two operations exhibit considerable parallelization

potential. Apart from the more traditional parallelization
architectures, such as multi-CPU systems, array processors
(many-cores) have been employed for effectively carrying out
the computation. CUDA-enabled Graphics Processing Units
(GPUs) are used in [11], [12] and [13] for convolution
implementations and in [11], [14], [15] and [16] for LCC
implementations, together with various algorithmic techniques,
in order to produce worthy results.

In this paper we attempt to develop a unified scheme in
addressing the computation of convolution and LCCs on digital
images. We present the FLCC library, a computational tool
which provides a simple yet powerful interface for fast
computation of convolution and LCCs on a wide range of
practical cases. Our approach is based on three levels. Firstly,
we utilize a set of efficient algorithms, reducing arithmetic
complexity to a minimum. Secondly, we exploit top-notch
modern parallel architectures, namely multi-core processors
and CUDA-enabled GPUs, in order to effectively carry out the
computations. Thirdly, we combine the advantages of the
different algorithmic and architectural approaches under an
easy-to-use and portable unifying scheme, namely the plan-
execute model.

In section II we present the full set of algorithms used in
FLCC library. In section III we describe the interface and the
various characteristics of FLCC, together with hardware
implementation and details on the plan-execute model. We
conclude with indicative experimental results in section IV and
some final remarks in section V.

II. ALGORITHMS

The first level of our approach consists of developing
efficient algorithms for the calculation of both convolution and
LCCs. We make no previous assumptions on the content of the
two signals – apart from their being real-valued – and so we are
interested in algorithms that guarantee the correct result in any
case; in other words we do not accept approximations or
numerical sacrifices. For this purpose we develop two separate
algorithmic methods for each operation; we refer to them as
“direct method” and “Fourier domain method”, the former
addressing the computation in the spatial domain while the
latter doing so in the frequency domain.

A. Direct Method

In the case of convolution, the direct method is quite
straightforward; it simply consists of calculating the result
directly as it is suggested by its definition in (1). That is, we
consider the filter (typically the smaller in size of the two
signals) to be sliding along every dimension. In each position
we simply calculate the dot product between the filter and the
according panel, obtaining the convolution value for that
position. This method, albeit straightforward, exhibits certain
properties that, if properly exploited, can lead to respectable
performance. Firstly, it is highly parallelizable, up to pixel
level from the writer’s point of view, i.e. every convolution
value can be calculated totally independently from the others.
Secondly, the method shows high space locality, which can
facilitate efficient memory caching. In section III we further
explain the way in which these properties are exploited in the
implementation level of FLCC.

In the case of LCCs, things are less straightforward though.
Attempting to directly perform the computation guided by the
definition in (3) poses difficulties which stem from the need of
calculating the local mean and standard deviation for every
single panel in the signal. To do that in an efficient way in the
spatial domain, we need to effectively reformulate the LCC
definition formula. We first note that the template can be pre-
normalized once for all in the beginning. Typically the
template will be small enough for this operation to be of trivial

cost. Denote by this normalized template. We progressively
rewrite (3) as shown below.

 (4)

(5)

(6)

Note that since we have assumed to be of

zero mean. Note also that calculating the LCC by (4) would
require three separate passes over each panel while by (6) the
entire calculation can be performed within a single pass over
each panel. Therefore, (6) provides us with the desired direct
method of efficiently computing LCCs in the spatial domain.

B. Fourier Domain Method

This method consists of performing the major part of the
calculation in the Fourier (frequency) domain. To achieve that
for convolution, we base on the well-known convolution
theorem, which is stated in (7).

 (7)

In (7), denotes the Fourier transform of signal
(same for). This theorem provides us with an efficient way of
calculating convolution. In particular, we can obtain
convolution between signals and by first Fourier-
transforming them, then calculating the element-wise complex
product of the transforms in the Fourier domain and finally
transforming the product back to the spatial domain. The
efficiency of this method arises from the possibility to perform
the transforms via the highly efficient FFT algorithm.
Furthermore, we have assumed that and are real-valued
(since they represent digital images). As it is well-known, the
Fourier transform of a real-valued signal exhibits conjugate
symmetry, i.e. half of its values can be expressed as the
complex conjugate of the other symmetrical half. The above
property can be further exploited in a way that the necessary
operations to perform a real-valued FFT be reduced by
approximately half compared to a regular complex FFT
[11][18]. Referring to the real-valued FFT as “half-FFT”, we
easily see that the whole operation can be completed with only
1.5 FFTs (i.e. 3 half-FFTs). Finally, one more optimization can

be considered in the – quite frequent – case where a stream of
images needs to be processed by the same filter. In that case, to
which we refer as “streaming”, the FFT of the filter need only
be calculated once; assuming the number of images in the
stream is sufficiently large, we end up with convolution by just
1 FFT (i.e. 2 half-FFTs) per image.

Moving the above method to the case of LCCs is not trivial
though. We present here a variation of the algorithm firstly
described in detail in [11]. Denote by the signal to be
processed (typically an image) and by the processing
template of size . We describe every panel in of size
as in (8).

 (8)

Here, is the spatial support of the template, i.e. a signal
of the same size as the template having units as values. With
(8) in mind, we rewrite (6) as in (9).

(9)

 (10)

 (11)

 (12)

In (9) we manage to express the whole LCC table in terms
of three correlations, described in (10), (11) and (12). But since
correlation is essentially a convolution where one of the two
signals has been reversed along every dimension (as it follows
by their definitions), it is possible to obtain these three
correlations by making use of the convolution theorem in (7).
We are therefore in the position now to present the Fourier
domain method of calculating the LCCs.

 Perform the FFTs of signals , , and .

 Calculate the element-wise complex products

 , and .

 Perform the inverse FFTs of the three products to

obtain , and respectively.

 Combine the three correlations element-wise as in (9).

It is therefore evident that the full LCC computation can be
effectively performed via 7 FFTs. Note though that in the
spatial domain all the quantities involved are real-valued. That
means the 7 FFTs can be efficiently reduced to only 3.5 FFTs.

Furthermore, in the frequent case of streaming, the FFTs of
and need only be computed once for the entire stream. This
finally leads to an efficient LCC full computation with just 2.5
FFTs per image.

C. Analysis and Comparison

Denote by the size of the convolution/LCC result and by

 the size of the filter/template. In Table I we present the
arithmetic complexity in terms of number of multiplications for
each algorithm we have previously described.

In calculating the complexity, we took into account the
convention that a complex FFT of points takes no more than
 operations [11]. We also accepted that the
complexity of the Fourier domain method is dominated by the
FFTs, disregarding the additive linear factor contributed by the
element-wise operations (complex product, division, root
extraction, etc.).

Observing the arithmetic complexities of Table I leads us to
some particularly interesting conclusions. Firstly, we note that

the complexity of the direct method is of class while

the complexity of the Fourier domain method is of class

 . The class of each method is the same for both

convolution and LCCs; the latter exhibit higher constant
coefficients which account for the additional need for local
normalization. Secondly, the number of operations of the direct
method shows strong (proportional) dependence on the size of
the template, while in the Fourier domain method the number
of operations is determined primarily by the size of the image
(assuming the typical case where the image is much larger than
the template), its performance being practically independent by
the size of the template. Therefore, the theoretical determinant
of which method is more efficient for each case is the

comparison between and the “critical size”
 , as it

follows:

 When
 the direct method performs better.

 When
 the Fourier domain method

performs better.

The critical size designates the template size for which both
methods perform equivalently and it can be theoretically
estimated by equating the arithmetic complexities of the two
methods. In Table II we show the theoretically estimated value

of
 for each possible case. We denote by the size of the

image and in our calculations we assume that . In

section III we demonstrate how we exploit the above
conclusion for developing a universal scheme of efficient
calculation of convolution and LCCs in FLCC library.

TABLE I. ARITHMETIC COMPLEXITY OF ALGORITHMS

Operation
Algorithmic Method

Direct
Fourier

(single image)

Fourier

(streaming)

Convolution

LCCs

TABLE II. CRITICAL TEMPLATE SIZES

Operation
Computational Case

Single image Streaming

Convolution

LCCs

III. FLCC LIBRARY

Apart from the algorithmic methods described in section II,
another way to further accelerate the computation of
convolution and LCCs is to utilize the potential of modern
parallel computer architectures. Among the wide variety of
currently available architectures we selected to work on two
particular platforms, namely multi-core processors and
Graphics Processing Units (GPUs), the latter being specifically
those manufactured by NVIDIA. The choice was made after
taking into account their computational power, effectiveness
regarding the calculations that concern us, wide availability,
affordability, relatively easy-to-learn programmability and the
existence of already established optimized libraries providing
the functions for performing FFTs.

On multi-core processors multithreading was done using
the POSIX threads API (or just pthreads) [17] and all FFTs
were made possible using version 3 of FFTW library [18].
Likewise, on GPUs the programming was done with NVIDIA's
CUDA programming environment [19] and the FFT functions
were provided by the CUFFT library [20], again by NVIDIA.

A. FLCC Library Presentation

As a next step to theoretical algorithmic development, we
proceeded in creating the FLCC library, a powerful and
versatile computational tool capable of a holistic approach
towards the fast calculation of convolution and LCCs. FLCC is
a library for the C (or C++) programming language and it is
available for use in the form of a complete software package,
easy-to-use and hopefully practically useful. Its goal is to
provide its user with an interface to facilitate the execution of
the operations under consideration. Its efficiency is achieved in
three ways. Firstly, it contains a collection of functions each
implementing one of the algorithms described in section II.
Secondly, it utilizes the strengths of the chosen parallel
architectures along with those of established libraries for the
efficient execution of FFTs. It should be noted that the various
algorithms and architectures can achieve different efficiency,
relative to the type and size of the problem, as already shown in
section II. Thus, finally, in order to combine every asset for the
best possible result, the library uses a versatile, open to
expansion plan-execute mechanism, similarly to the FFTW and
CUFFT libraries. At the time of syntax of this paper, FLCC
library is at version 1.3 (FLCC v1.3). Despite the library's
being fully operational, it is still at an early stage and will be
complemented with new features in the future. A complete list
of FLCC's current features follows:

 Fast computation of convolution for 2D and 3D images
and filters of any size.

 Fast computation of locally normalized correlation
coefficients distributions (LCCs) for 2D and 3D
images and templates of any size.

 Single precision arithmetic.

 Accelerated computation of convolution and LCCs
between a stream of images and the same
filter/template.

 Capability of parallel computation either on a multi-
core CPU or a (currently one) GPU.

Finally, we report that FLCC v1.3 is supported for use on
UNIX/Linux and MS Windows (via Cygwin) systems. Each
new version is freely available for installation and use from the
webpage http://autogpu.ee.auth.gr/. FLCC is distributed under
the FreeBSD license, complete with full documentation.

B. FLCC Interface Description

Central idea to the design of FLCC is to not relate its user
with practical issues concerning the choice of an appropriate
algorithm or architecture and to provide them with a simple
and succinct API that is responsible for all the work; from
making the correct choice, to performing the computation.
Version 1.3 of FLCC library provides six main functions for
the computation of convolution and LCCs. In addition, there
are two more memory management functions intended for the
allocation and deallocation of memory for the input and output
tables, which should be used instead of the traditional ones.
Note that as part of the documentation of FLCC there is a
detailed up-to-date manual [21], fully describing the API. An
overview of FLCC’s API is shown in Table III.

A short description of the plan-execute mechanism used by
FLCC would be the following. Initially, the user calls a planner
function in which they describe the problem (number of
dimensions, size of each dimension, single image or
streaming). The planner function processes that input and
decides on the best algorithm-architecture combination for the
calculations. The planner proceeds to creating an object called
plan, which includes all the information pertaining to this
choice. Afterwards, the user calls an executor function that uses
the above plan and the input images and returns the resulting
output table. The advantage of this approach is that the
execution can be performed for an unrestricted number of
times (though for the same type of computation and size of
images) while the planning need only be done once for each
different problem. This can lead to substantial efficiency in the
(quite frequent) case of several calculations of the same type.
Finally, there exists another type of function that deallocates all
the resources occupied by the plan. It is intended to be called
when the plan is no more needed.

C. Parallel Implementation of Direct Method

We will analyze the direct method for both convolution and
LCCs alongside because, as we saw in section II, they are
similar in that they both have to do with a sweep of the
filter/template over the image and the execution of some sort of
operation between the filter/template and the overlapping
panel. Another thing they have in common is their high
parallelizability. Every output element can be calculated
independently from all others, by a different thread, just by
knowing the filter/template and the corresponding panel.

TABLE III. FLCC API FUNCTIONS

Operation
Computational Stage

Planning Execution Plan deallocation

Convolution conv_plan() conv_exec() conv_destroy()

LCCs lcorr_plan() lcorr_exec() lcorr_destroy()

Memory Management

flcc_malloc() flcc_free()

In the case of a CPU with one or more cores the
parallelization is done by creating threads using the pthreads
library. The number of threads created is dictated by the user
during FLCC’s installation and of course it is recommended to
be set equal to the number of the CPU cores available. Each
thread is given access to the filter/template and the padded
image and it is charged with calculating its share of output
elements. There has also been an effort for optimization. The
majority of filters/templates found in practical problems are of
equal dimension sizes (i.e. square or cubic) and those managed
by the direct method have a relatively small size. This lends the
opportunity for an optimization which lies on the idea of hard-
coding the few most frequent cases, allowing among others for
explicit loop unrolling. Indeed, apart from the general, naive
thread functions that perform convolution and LCCs, FLCC
retains optimized hard-coded versions of that general function
that refer to certain filter/template sizes (2x2 up to 32x32 for
2D and 2x2x2 up to 10x10x10 for 3D). Since the size is
already known it is possible to fully unroll the iteration loop for
each panel. Regarding the optimized thread functions, this is
done with a smart use of macro-instructions. We define a
macro-instruction that does the work of the thread function and
the sizes of the filter/template’s dimensions are given as
arguments. During installation multiple calls of this macro-
instruction are compiled for the different sizes we discussed
and since the number of iterations for each case is a constant
number the compiler fully unrolls the loop. This way, we
achieve optimized performance for the majority of common
cases while it is ensured that the calculation is always
performed correctly even for the less common ones.

Given the capabilities of GPUs and CUDA, it is possible to
start as many CUDA threads as the number of output elements;
each thread executing the kernel function that calculates its
according element using the direct method. We organize
CUDA threads to fixed-size blocks and consequently the
blocks to a grid. We take steps though to avoid a control
structure inside the kernel that checks whether the output
element is within the logical limits of the output array. We do
this by allocating more memory than needed so as to have an
exact fit of all the blocks into this enlarged output table. After
the calculations are done we discard the additional values. This
whole process is incorporated during the padding process and
thus does not affect the temporal efficiency negatively. Again,
there has been an effort for further optimization. The primary
memory modules of NVIDIA’s GPUs are the following three:
the local memory private to each thread, a fast shared memory
module present in each of the GPU’s multiprocessors that all
threads in a block share and the larger, relatively slower global
memory of the GPU available to all threads [19]. We perform
caching of all the data needed by the block threads on the
shared memory module which costs very little in time and
ensures faster multiple accesses to the data needed. Said data
are the filter/template and the section of the image needed by
the block threads. Mirroring the implementation on a CPU, we
proceed in performing full hard-coded loop unrolling in the
common cases of filters/templates with the certain sizes we
discussed. This time we have created a code generator using
MATLAB that generates the code of a kernel for a given
filter/template size. We pre-generated kernels for the sizes of
interest that both utilize shared memory and perform full loop

http://autogpu.ee.auth.gr/doku.php?id=flcc

unrolling to the effect we described earlier in the case of CPUs.
The code of these kernels is pre-included in the library and it is
compiled during installation.

We should note that the latter method for performing loop
unrolling is slightly faster than using macro-instructions but its
major disadvantage is that it dramatically increases the size of
the library’s source code, leading to high compilation times
during installation. In the case of the CPU though, the
difference in optimization achieved by code generators is
negligible, so we choose to work with macro-instructions
instead, avoiding further increasing FLCC’s source code.

D. Parallel Implementation of Fourier Domain Method

As we described in section II, the significant part of the
Fourier domain method for LCCs is the computation of three
convolutions. Therefore we describe the implementation of the
Fourier domain method focusing on the stage of convolution.

In the CPU implementation of the Fourier domain method
we extensively use the established FFTW library that provides
optimized functions for performing the 2D and 3D half-FFTs
needed. This way the FFTs are performed at roughly half the
time and with half the memory requirements. FFTW also
supports multithreading as it utilizes internally the pthreads
library. The element-wise complex multiplications are easily
executed by sharing the workload among different threads.
Moreover, FFTW’s functions work faster for tables whose
dimension sizes may be expressed as small prime number
products [18]. In order to exploit this characteristic, we expand
each table dimension to meet this requirement. This process is
included in the padding process and of course in the end we
discard the additional elements of the result. A final detail is
that after an inverse FFT by an FFTW function the signal we
get is not the wanted signal. The latter will result after a
division of each element of said signal with its total number of
elements. This division is included in the element-wise
multiplication thread function so as to be done in parallel.

In the GPU implementation we use in the same manner
NVIDIA’s CUFFT library for the half-FFTs. As for the
element-wise multiplication, we created a simple kernel that
performs it. The same also applies in this case concerning the
time and memory space benefits of the half-FFTs, the fact that
the FFTs are faster for tables whose sizes are small prime
number products and the need for a division of each of the
signal’s elements by the number of elements of the signal. So
we act similarly by lengthening each table dimension as in [13]
to achieve faster FFT execution and performing the division
inside the CUDA kernel so as to be done in parallel.

E. Streaming on GPUs

Apart from the algorithmic benefits of streaming on the
Fourier domain method we already discussed in section II,
there is also the possibility of an additional optimization in the
case of computations on a GPU using either the direct or the
Fourier domain method. In order for data to be processed by
the multiprocessors of a GPU, they first need to be transferred
from RAM to the GPU’s global memory. Regarding
computations between a stream of N images and a
filter/template, all of the N images and the filter/template have
to be transferred to the global memory and then N output tables

have to be transferred back to RAM. This would be seriously
time-consuming but CUDA offers a possibility that we can
exploit in order to “hide” the transfer time behind the
computation time. CUDA streams lend the opportunity of
asynchronous concurrent execution of kernels and transferring
of data for certain GPUs [19]. So, while the i-th output table is
being calculated, we transfer the (i-1)-th output table back to
RAM and the (i+1)-th image to the GPU’s global memory
simultaneously. With this concurrency trick the only visible
transfer times are the first image’s and the filter/template’s
ones to the GPU and the last output table’s one back to RAM.
In case asynchronous concurrent execution and transfer is not
supported by the user’s GPU, the transfers and calculations are
still performed correctly yet serially.

F. FLCC’s Plan-Execute Model

FLCC contains functions that implement all the different
algorithms on both chosen parallel architectures with all
combinations possible. During planning all of the available
functions are called to perform calculations on random tables.
Their individual execution times are measured with precision
and the function to be determined the fastest is designated to
perform the computations during the execution stage. In the
case where one or more of these functions fail due to some
internal error, FLCC recognizes the failure and excludes them
from the selecting process. One final detail is that both
FFTW’s and CUFFT’s planning stages are included in FLCC’s
planning stage and thus do not affect the execution time.

IV. EXPERIMENTAL RESULTS

We present experimental results on the usage of FLCC after
performing two different sets of experiments. Both experiments
were carried out on a multi-core SMP system equipped with a
CUDA-enabled GPU. The multi-core is an AMD Opteron 6168
of totally 24 cores with a clock speed of 1.90 GHz. The GPU is
an NVIDIA GeForce GTX 480, consisting of a total of 480
cores and having a clock speed of 1.40 GHz.

A. First Set of Experiments: Algorithmic Comparison

We time the performance of every algorithm implemented
in FLCC for a 2D image of 2000x2000 pixels against a
template of sizes ranging from 2x2 up to 32x32 pixels. The
results are illustrated in Fig. 1 for both convolution and LCCs
on the multi-core and similarly in Fig. 2 on the GPU.

The results verify our initial hypothesis, i.e. the
performance of the direct method decreases significantly as the
template becomes larger, while the performance of the Fourier
domain method remains stable for all template sizes. We also
observe the critical template sizes for each case, whose
existence serves as the basis for the FLCC planning strategy.
One can also notice the performance benefit (up to
approximately 50%) introduced by the process of streaming,
thanks to both the algorithmic and the architectural
optimizations it allows for. Last but not least, we see that the
utilization of high-performance parallel architectures can
alleviate the additional computational load introduced by local
normalization; indeed, the performance on LCCs is very close
to the one of convolution, thus enabling their usage in cases
where local normalization would previously be considered too
expensive to perform.

Figure 1. Algorithmic performance of convolution (left) and LCCs (right) on multi-core.

Figure 2. Algorithmic performance of convolution (left) and LCCs (right) on GPU.

B. Second Set of Experiments: FLCC Planning

Having examined the performance of each algorithm-
architecture combination, we now focus on the behavior of the
FLCC planning process. We illustrate the selections made by
the planner functions of the FLCC interface for 2D convolution
on a single image or a stream of images, separately on the
multi-core in Fig. 3 and the GPU in Fig. 4 (our system’s GPU
is circa 10 times faster than the multi-core so planning between
them would not be of much interest). The image sizes to plan
for range from 32x32 up to 4096x4096 pixels and the template
sizes range from 2x2 up to 32x32 pixels.

One can notice that, in principle, FLCC selects correctly
according to our theoretical predictions and first set of
experiments. Indeed, the direct method is selected for smaller
templates while the Fourier domain method is preferred for
larger templates. It is also noteworthy that FLCC seems to take
correctly into account whether the computation refers to a
single image or a stream of images, selecting the Fourier
domain method – which as we have explained benefits
algorithmically by the streaming – more often when streaming
is concerned. Finally, we observe how FLCC selections take
into account the differences between the two platforms; the
direct method is more often selected on the GPU than on the
multi-core, since its greater parallelizability allows it to
perform better on a massively parallel array processor like the
GPU. Similar results – not shown here – have also been
obtained when planning for LCCs and can be found in [22].

V. CONCLUDING REMARKS

In this paper we began by examining algorithmically the
calculation of convolution and LCCs in both the spatial and the
frequency domain. We described two methods that correspond
to each domain and we referred to them as direct method and
Fourier domain method respectively. We showed that the direct
method is more suitable for calculations with relatively small
filters/templates, whilst the Fourier domain method is more
suitable for larger ones. Secondly, we examined the suitability
of convolution and LCC calculation in a parallel environment.
We advocated in favor of the usage of multi-cores and CUDA-
enabled GPUs, based on their computational power,
availability and affordability. Thirdly, we explained how the
various advantages of the different algorithmic and
architectural approaches can be combined through the
utilization of a plan-execute mechanism in execution time,
leading to an efficient tackling of a wide range of practical
cases.

We took one step forward in developing the FLCC library,
an efficient, easy-to-use and portable computational tool that
makes a holistic attempt towards the practical calculation of
convolution and LCCs. We described how FLCC implements
each algorithm on each architecture and how the best
algorithmic-architectural combination for each case and system
is selected in execution time via the plan-execute mechanism.
Finally, we presented how FLCC’s functionality is accessed
through its interface, a minimal set of functions designed to be
practical and easy-to-learn, without requiring any specialized
knowledge by its user.

Figure 3. FLCC planning for a single image (left) and a stream of images (right) on multi-core. Cyan for direct method and magenta for Fourier domain method.

Figure 4. FLCC planning for a single image (left) and a stream of images (right) on GPU. Blue for direct method and red for Fourier domain method.

Of course, as any live piece of software, current FLCC
version 1.3 manifests its own weaknesses and limitations.
Further development and expansion of its functionality and
utility are possible, such as exploration and incorporation of
new algorithms or support for new architectures and platforms.
Examples for immediate improvement include separable
convolution, support for double precision or utilization of more
than one GPU concurrently. Finally, less restraining (but more
complicated) interfaces can be added, allowing the user an
advanced accessibility to FLCC’s internal power.

REFERENCES

[1] M. H. Hayes, Schaum’s Outline of Theory and Problems of Digital
Signal Processing, McGraw-Hill, 1999.

[2] I. Pitas, Digital Image Processing, Thessaloniki, 2001.

[3] D. G. Lowe, "Distinctive image features from scale-invariant
keypoints," International Journal of Computer Vision, vol. 60, no. 2, pp.
91-110, 2004.

[4] L. Itti, N. Dhavale, and F. Pighin, “Realistic avatar eye and head
animation using a neurobiological model of visual attention,” Proc. SPIE
48th Annual International Symposium on Optical Science and
Technology, Bellingham: SPIE Press, pp. 64-78, Aug. 2003.

[5] R. Brunelli, and T. Poggio, "Face recognition: features versus
templates," IEEE PAMI, pp. 1042-1052, 1993.

[6] T. Serre, L. Wolf, and T. Poggio, "Object recognition with features
inspired by visual cortex," Proceedings of 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), San
Diego: IEEE Computer Society Press, June 2005.

[7] J. P. Lewis, “Fast normalized cross-correlation,” Industrial Light and
Magic.

[8] F. Crow, “Summed-area tables for texture mapping,” Computer
Graphics, vol. 18, no. 3, pp. 207-212, 1984.

[9] K. Briechle, and U. D. Hanebeck, “Template matching using fast
normalized cross correlation,” Proceedings of SPIE, vol. 4387,
AeroSense Symposium, Orlando, Florida, USA, Apr. 2001.

[10] X. Sun, N. P. Pitsianis, and P. Bientinesi, "Fast computation of local
correlation coefficients," Proc. of SPIE, vol. 7074, 707405-1, Sep. 2008.

[11] G. Papamakarios, G. Rizos, N. P. Pitsianis, and X. Sun, "Fast
computation of local correlation coefficients on graphics processing
units," Proc. SPIE 7444, 744412, 2009.

[12] V. Podlozhnyuk, “Image convolution with CUDA,” NVIDIA
Corporation, June 2007.

[13] V. Podlozhnyuk, “FFT-based 2D convolution,” NVIDIA Corporation,
June 2007.

[14] I. Karafyllias, and I. Manolis, The Computation of Local Correlation
Coefficients of Images on Graphics Processing Units, Dissertation for
Diploma, Aristotle University of Thessaloniki, Apr. 2009.

[15] D.-J. Chang, A. H. Desoky, M. Ouyang, and E. C. Rouchka, "Compute
pairwise Manhattan distance and Pearson correlation coefficient of data
points with GPU," Proceedings of the 10th ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, IEEE, pp. 501-506,
May 2009.

[16] P. Eibl, D. Healy, N. P. Pitsianis, and X. Sun, "Fast pattern matching in
3D images on GPUs," HPEC Proceedings, 2009.

[17] B. Nichols, D. Buttlar, and J. P. Farrel, Pthreads Programming, O’Reilly
& Associates Inc., 1996 .

[18] M. Frigo, and S. G. Johnson, "The design and implementation of
FFTW3," Proc. IEEE, vol. 93, no. 2, pp. 216-231, 2005.

[19] NVIDIA, CUDA Programming Guide v4.0, June 2011.

[20] NVIDIA, CUDA CUFFT Library Manual v3.1, May 2010.

[21] G. Papamakarios, and G. Rizos, FLCC Manual v1.3, Nov. 2011.

[22] G. Papamakarios, and G. Rizos, FLCC: A Library for Fast Computation
of Convolution and Local Correlation Coefficients, Dissertation for
Diploma, Aristotle University of Thessaloniki, Dec. 2011.

	I. Introduction
	II. Algorithms
	A. Direct Method
	B. Fourier Domain Method
	C. Analysis and Comparison

	III. FLCC Library
	A. FLCC Library Presentation
	B. FLCC Interface Description
	C. Parallel Implementation of Direct Method
	D. Parallel Implementation of Fourier Domain Method
	E. Streaming on GPUs
	F. FLCC’s Plan-Execute Model

	IV. Experimental Results
	A. First Set of Experiments: Algorithmic Comparison
	B. Second Set of Experiments: FLCC Planning

	V. Concluding Remarks
	References

