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Abstract 

Convolution and correlation between digital images constitute two of the most basic 

and significant operations in the field of digital image processing. Their considerably high 

computational complexity, though, combined with current demands concerning time 

performance and arithmetic precision, has been a constant challenge in scientific research. 

The above problem becomes exacerbated in cases where there is also the need for local 

normalization of the coefficients and/or the number of the image dimensions increases. In 

this dissertation we describe a set of algorithmic methods to efficiently deal with the 

problem, without sacrificing the arithmetic precision of the computations. Furthermore, we 

present and analyze the FLCC library, a powerful yet handy computational tool, which 

implements the aforementioned methods whilst utilizing the strengths of modern efficient 

parallel architectures (multi-core systems, GPUs) in order to achieve fast computation of 

convolutions and correlation coefficients between 2D and 3D images. We conclude with 

indicative experimental results, which demonstrate the usefulness and efficiency of the FLCC 

library. 
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0 Introduction 

The central subject of this diploma dissertation regards two of the most basic 

mathematical operations in the field of digital signal processing. The first among them is 

convolution. Convolution is a process during which a system, mathematically expressed as a 

signal called filter, modifies an input signal into an output signal. The significance of the 

aforementioned operation is fundamental in digital signal processing, as much in theory as 

in practice. It is a fact that convolution is found to be a basic stage of processing in a 

multitude of modern image processing applications, such as the design of finite impulse 

response filters, pattern recognition, feature extraction and object detection in computer 

vision applications and image compression/decompression to name only a few. It is 

noteworthy that convolution is computed in a very similar manner as another cardinal 

mathematical operation, cross-correlation. Their difference lies on their physical 

significance, cross-correlation being a means of computing a similarity degree between two 

signals. As in the case of convolution, cross-correlation has numerous applications in fields 

such as pattern recognition, signal detection and time-series analysis. 

The second mathematical operation with which we occupy ourselves is the table of 

correlation coefficients with local normalization or local correlation coefficients or simply 

LCCs. From a statistical point of view, the correlation coefficient is a measure of the linear 

similarity/dependence between two random variables. The table of local correlation 

coefficients between images, on the other hand, is actually a variation of cross-correlation in 

which we also proceed to the local normalization of the signals. The tables of correlation 

coefficients are often used in image processing applications such as template matching, 

image registration, change or motion detection and more. 

Despite their usefulness and the frequency with which they appear in practice, the 

above three operations and especially the table of local correlation coefficients 

unfortunately present a rather high arithmetic complexity that leads to increased 

computation times. This becomes displeasingly evident in a multitude of applications where 

there is also the matter of deadlines for the execution of the computations, a most 

indicative example being real-time applications (such as real-time video processing, 

computer vision and lots more). Furthermore, modern applications require the processing of 

images of a very high resolution and definition (as in HDTV) and even of three-dimensional 

images (as in axial tomography). The discovery of solutions that lead to a practically efficient 

execution of the computations in question is therefore necessary. 

To efficiently compute convolution (and cross-correlation) a number of algorithms have 

been developed which, using the convolution/correlation theorem, transfer the major bulk 

of the computations from the spatial domain to the frequency domain. Thanks to this, the 
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use of fast Fourier transforms becomes possible, leading to a significant decrease of 

computational complexity. It is also observed that by using the frequency domain, in the 

case the computation concerns multiple convolutions while using the same filter, the pre-

computation of a part of the whole operation is permitted, thus further decreasing the 

execution time per single convolution. However, in the case of a table of local correlation 

coefficients the development of frequency domain methods is not directly evident. Instead, 

in the case of a table of correlation coefficients, algorithms have turned up that try to reduce 

the execution time by computing arithmetic approximations of the result, using devices such 

as the application of general normalization instead of local. However, these approximations 

do not always pose a desired solution, as often applications are encountered where the 

arithmetic precision of the calculations is of critical importance, like applications related to 

the processing of information of medical context. Especially interesting, finally, is an effort to 

confront the problem by using powerful hardware architectures. Increasingly promising are 

parallel computing architectures like graphics processing units. 

Our goal in this diploma dissertation is to develop a complete approach for the fast 

computation of convolution and correlation coefficients with local normalization, without 

making any compromises concerning the precision of the results. We approach the problem 

on three levels. The first is the development of efficient algorithms aiming to reduce the 

arithmetic complexity of the calculations. Specifically we examine the basic two kinds of 

methods for the computation of each of the operations, the computation in the spatial 

domain and the computation in the frequency domain using fast Fourier transforms, and we 

develop efficient algorithms that exploit the potential of each method. The second level 

consists of the use of two modern parallel computer architectures that have been chosen 

based on their high performance and also their wide availability. These are the multi-core 

processors and the graphics processing units. The third and final level is the introduction and 

use of a mechanism that performs the computations according to the plan-execute model. 

This mechanism combines the advantages of all the individual approaches in a unified 

scheme and allows for the addressing of the general computational problem in its entirety. 

As a result of the above, we have created the C (or C++) language library named FLCC, a 

complete software package that provides its user the ability of executing fast computations 

of convolutions and correlation coefficients with local normalization. The name of the library 

is an acronym and it means Fast Local Correlation Coefficients. FLCC provides a simple and 

concise interface to its user that is able to carry out the computations under examination in 

a versatile and effective way. FLCC comprises the crystallization of our total effort for an 

efficient approach to the problem: it implements the various algorithms developed and it 

executes them on the parallel architectures we have chosen. A vital part in the use of the 

library is the plan-execute mechanism, the central idea of which is the automatic search for 

the fastest possible means of execution on the user’s computer system for each distinct case 

of a computation. The FLCC library is freely available, fully functional, is at version 1.3 at the 

time of syntax of this diploma dissertation and is accompanied by full documentation in the 

form of a usage manual. 

We will proceed with a small synopsis of what will follow next in the document. 
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In chapter 1 we will do a quick recap to all the basic theory concepts as they will be 

used as a basis for the next chapters. We will provide the definitions for convolution, 

correlation and tables of correlation coefficients with local normalization. We will 

furthermore talk about the fact that correlation is actually a convolution between the image 

and the inverted filter, the representation of discrete signals in the Fourier domain and also 

about how a convolution or correlation can be expressed in the Fourier domain through the 

convolution/correlation theorem. In the end of the chapter all the theoretical groundwork 

will have been laid and thus the inherent similarities in the calculation of the three 

operations under examination will be evident. 

In chapter 2 we will see that each of the operations is amenable for solution using two 

different methods, those being the direct method, i.e. the computation in the domain of 

space, and the Fourier domain method, i.e. the computation in the domain of frequency. By 

capitalizing on the ideas of these two methods, we develop efficient algorithms for each one 

of the operations examined. Furthermore, we find the computational complexities for each 

one of the algorithms as a function of the sizes of the image and the template/filter and we 

locate the theoretic “preference bounds” between the individual algorithms. In this chapter 

we also discuss another matter, that of carrying out the computations under examination 

between one template/filter and a series of images of the same size and dimensions, which 

we call a stream of images. We examine the algorithmic improvements resulting from the 

above case, we find the new computational complexities and we locate the new “preference 

bounds”. 

In chapter 3 we will discuss the modern parallel computer architectures which we use 

to achieve higher performance, i.e. multi-core processors and graphics processing units. We 

will describe the organization of their hardware, their memory hierarchy and the means by 

which they are programmed. We will make references to the tools that we use to program 

them (pthreads and CUDA) and the libraries we use to execute fast Fourier transforms on 

each one (FFTW and CUFFT). 

In chapter 4 we will discuss the FLCC library itself. We will begin with a synopsis of the 

features provided by the version that is valid at the time of syntax of this document. We will 

describe FLCC’s interface and how a user may find use for it in a program of their own 

making. Finally, we will talk about its internal operation, i.e. how the algorithms were 

implemented on each of the architectures, issues regarding the implementation of 

streaming and of course about the plan-execute model. 

In chapter 5 we submit the FLCC library to a series of experiments and we present their 

results. Initially we will present the execution times for the different algorithms and we will 

examine the extent to which the theoretic “preference bounds” between the algorithms are 

validated. We will also study the library’s behavior on each individual architecture and we 

will make an effort to compare the latters’ performance. Finally, we will study the 

performance of FLCC’s planning stage, i.e. its decision on a most suitable computation 

method for various convolution and correlation coefficients problem sizes (image and 

template/filter). 
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Chapter 6 consists of a review of the subjects undertaken in this dissertation and a 

synopsis of the results produced. 

In chapter 7 we ponder on how FLCC library may be improved, expanded on and 

become more versatile in its use and also on other matters that resulted during the time we 

were engaged on this intricate yet interesting subject. 

Finally, chapter 8 is an appendix in which we provide, without comments, results 

produced by executing chapter 5’s experiments on a different computer system. 
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1 Theory Elements 

This chapter serves as a quick and easy reference to preparative notions regarding the 

scientific field of this diploma thesis. We begin with a small number of basic definitions and 

we describe our field of interest (1.1). We move on to provide the mathematical definitions 

of convolution (1.2) and correlation (1.3) and we explain their physical meaning and their 

properties in the field of digital signal processing. We then give the definition for the 

normalized correlation coefficient or else Pearson coefficient and we discuss the table of 

correlation coefficients and the idea of local normalization between an image frame and a 

template (1.4). Furthermore, we make a reference to one of the most important tools of 

digital signal processing, namely the Fourier domain, and we provide the definitions for its 

basic transforms (1.5). We conclude this theory summary with a review of the well-known 

convolution/correlation theorem (1.6). 

We would like to add here that the experienced reader may ignore sections, or even the 

entire chapter, and proceed directly to the next one, where our work actually begins. 

1.1 Images as Signals 

In this thesis we deal with the processing of two-dimensional and three-dimensional 

digital images. A digital image is a rectangular arrangement of pixels (picture elements), 

where each one corresponds to a real or vector value. This value expresses the color and the 

luminance of the corresponding pixel. From now on we will deal exclusively with real-valued 

images, that is, single-color grayscale images. This does not sacrifice the generality of our 

approach, since for multi-color images (such as RGB) each color component may be 

separated and be analyzed on its own. 

On the above perspective, from now on we will view an image as a two-dimensional or 

three-dimensional signal which is discrete (it constitutes an integer-indexed sequence) and it 

receives exclusively real values. Such a signal can be compared to a function, in the sense 

that it represents the relation between two parameters – variables, an independent and a 

dependent one. The independent variable can be alternatively named sample index (and will 

correspond to the according pixel) and the dependent one may be called magnitude. 

A further characteristic images have when viewed as discrete signals is that they 

constitute signals of finite size. We call impulse or sample a delta function which has been 

shifted and scaled with a random constant. For instance          is an impulse. We can 
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therefore view each discrete signal as a summation of single impulses. A finite signal is equal 

to a sum of a finite number of impulses, assuming at the same time that all the remaining 

sample values are equal to zero. 

Summing up, for the rest of this document we will refer exclusively to signals which are: 

 discrete 

 real-valued 

 finite in size 

 two or three-dimensional 

and we will imply that these signals represent images. In Figure 1.1 we show an example of 

mathematical representation of an RGB image in the form of three real-valued signals. 

 

Figure 1.1: Representation of an RGB Image as a Signal 

1.2 Convolution 

Image processing devices can mathematically be described through the idea of the 

system. A way to define a system is the following: a description of how a signal is 

differentiated in relation to a second signal. When the system receives a discrete signal as 

input (input signal), it produces a second signal as output, which is therefore called output 

signal and represents the result of the processing. A generic manner to symbolize this 
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process is with a mathematical operator – transform, such as     . That way, with      and 

     being the input and output signals respectively, we may write: 

              (1.1) 

The systems which we are interested in are called Linear and Shift Invariant, or simply 

LSI. The above two properties can be described as follows: 

 A system is linear when the following holds 

                                          (1.2) 

where   ,    are constants. 

 A system is shift invariant when the following holds 

                    (1.3) 

where    is an integer that represents the shift and             . 

Further analysis of the consequences of the above two properties is considered to be 

beyond the scope of this theory review.  

Suppose now we have an LSI system which we may call  . The signal which is produced 

at the output of   when it receives the impulse function      as its input is called impulse 

response and it is denoted by     . It is interesting to see that the impulse response alone 

contains the full set of information needed to fully determine the system. Indeed, if one 

knows the impulse response, one is capable of determining the output of   for any input. It 

can be shown that for an arbitrary input signal     , the corresponding output signal      is 

always given by the convolution of      with the impulse response     . 

Let’s talk about convolution. As we saw above, the convolution is the mathematical 

relation that interconnects the three signals that are found in the description of an LSI 

system (input signal, output signal and impulse response) and this is where convolution 

owes its significance in the field of signal processing. For discrete signals, the sum of 

convolution is defined as: 

 
                

  

    

 (1.4) 

and in a shorter form is symbolized as: 

                (1.5) 

An important thing we shall note is that in case we refer exclusively to signals of finite 

size, the size of the output signal depends on the sizes of the other two signals in the 

equation, from which it results in a straightforward way. To be precise, in one dimension the 

length of the output signal is equal to the sum of the other two minus one: 

              (1.6) 
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where    is the length of signal      along the first (and only) dimension and likewise for 

     and     . 

Generalizing to more than one dimensions is a rather simple task. Here follows the 

definition of convolution for the two-dimensional case: 

 
                                                   

  

     

  

      

 (1.7) 

For the lengths along each dimension the following holds: 

              
             

(1.8) 

while the size of the two-dimensional convolution is equal to:  

           (1.9) 

Likewise, the definition for the three-dimensional case is: 

                                     

                                   

  

     

  

     

  

     

 
(1.10) 

The lengths are: 

              
             
             

(1.11) 

and the size of the output signal is: 

             (1.12) 

Finally, we shall generalize the above and talk for an arbitrary number of ν dimensions. 

The definition of convolution is: 

                           

    

 (1.13) 

where                 
  and                 

 . 

The lengths are: 

                            (1.14) 

Finally, the size is: 

 
        

 

   

 (1.15) 
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We shall note that, in the field of digital image processing, the signal      which we 

referred to as “impulse response” may alternatively be called “filter” or “template”, 

depending on the implied context. From now on, whenever we refer to convolution we will 

use interchangeably any of the above terms. 

 

Figure 1.2: Convolution Applications 

Two convolution applications on digital images are presented in Figure 1.2. In the first 

case the original image is convolved with a Gaussian filter in order to produce a “blurred” 

copy. In the second case the same original image is convolved with a Gabor filter in order to 

extract its contour. 

1.3 Correlation 

In this section we study correlation, an equally significant mathematical process in the 

field of digital signal processing. Correlation, from a mathematical point of view, is similar to 

convolution, in the sense that it uses two signals and produces a third. Nevertheless, these 

two processes demonstrate a totally different physical behavior. We no longer refer to an 

LSI system which accepts an input signal and produces some kind of response. 

In the heart of correlation lies the following problem: given an input signal, what can be 

a way to determine where in this signal a second signal – template is located. Using 
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correlation, the answer is a third signal which is called cross-correlation of the two input 

signals, whose values determine the “similarity degree” between the input signal and the 

template for every relative positioning. In case the input signal is correlated with itself, the 

signal we get as the result of the process is called auto-correlation. In Figure 1.3 we can see 

an example of cross-correlation between a two-dimensional image and a segment of it. 

 

Figure 1.3: Cross-Correlation between an Image and a Template 

We proceed to mathematically defining correlation. Denote by      a discrete template 

or target. The sum of correlation for one-dimensional real-valued signals is the following: 

 
                

  

    

 (1.16) 

and it can be written in a shorter form as: 

                (1.17) 

The generalization of the above definition for multi-dimensional signals follows. In the 

two-dimensional case we get: 

 
                                                   

  

     

  

     

 (1.18) 

For the tree-dimensional case we get: 

                                     

                                   

  

     

  

     

  

     

 
(1.19) 

Finally, generalizing for the ν-dimensional case gives: 

                           

    

 (1.20) 

where                 
  and                 

 . 
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Referring to the most general case, by changing variables in the sum of correlation we 

may observe that: 

                 

    

            

    

 (1.21) 

The above formula is of remarkable significance and it means that we can calculate the 

cross-correlation between two signals by simply reversing the template in the discrete time 

domain along every dimension and then calculating the convolution as it is already defined. 

In other words: 

                      (1.22) 

The aforementioned result reveals that, computationally, correlation is equivalent to 

convolution, provided the template has been already reversed. A similar result can be 

extracted if we try to reverse the image itself instead of the template. 

As for the length of the output signal along each dimension and its total size, the same 

results as in convolution hold, so we shall not repeat ourselves. 

1.4 Correlation Coefficients 

In section 1.3 we saw that the process of correlation reveals a “similarity degree” for 

each segment of a signal with a certain template. The values of correlation, though, are 

subject to the “magnitude” of the signal and the template values and thus the resulting 

“similarity degrees” among different positions and/or signals cannot be comparable. This 

problem can be solved with prior normalization of the correlation values, which leads us to 

defining the so called correlation coefficients, a thorough description of which can be found 

in the following subsections. 

1.4.1 Correlation Coefficient Definition 

Here we describe a widespread measure for the comparison of continuous variables – 

quantities, namely the linear correlation coefficient. It is also known as the Pearson 

coefficient. For each pair of quantities                    , the linear correlation 

coefficient   is given by the formula: 

 
       

                   
   
   

           
    

   
           

    
   

 
(1.23) 
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where      is the mean value of    and      the mean value of   .   is the number of data 

points of each quantity. 

The above formula can be otherwise written as: 

 
       

 

 

                   
   
   

        
 
        

        
 (1.24) 

where          is the covariance of  ,   and      is the standard deviation of   (same for 

    ). Note: contrary to some authors, we assume that the variance is calculated by the 

formula: 

 
      

 

 
          

 
   

   

 (1.25) 

dividing by   and not by    . 

Each quantity may also be of more than one dimensions, that is, a variable   may be 

described by a set of data points            . 

 

Figure 1.4: Correlation Coefficient Examples 

Due to the Cauchy – Schwarz inequality, the value of coefficient   lies always within the 

closed interval       . When it is of value   we say that there is an absolute positive linear 

correlation between the two quantities. That means that in a diagram where each axis 

represents a variable, the points    which are determined by the corresponding pairs 

        all lie on a straight line of positive slope and thus   and   increase proportionally to 

each other. Value   is independent though of the specific value of that slope. Likewise, when 

the coefficient is of value    we say that there is an absolute negative linear correlation 

between the two variables and thus the same as above will hold with the only difference 

that the straight line now will be of negative slope. A value approaching   signifies that the 
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two variables   and   are uncorrelated – orthogonal, with a value of exactly   meaning total 

lack of any linear correlation whatsoever. In Figure 1.4, we can see examples of         sets 

of data points with different correlation coefficients. 

1.4.2 Correlation Coefficients with Local Normalization 

In this subsection we will study the calculation of Local Correlation Coefficients (or 

LCCs) between an image – frame and a template. The image is due to be analyzed against 

the template, the latter possibly representing a different image or a subsection of the 

former. 

We view the images and the templates as two-dimensional or three-dimensional 

variables. Since we deal only with images, we consider that the value of each data point 

(which in this case may be called pixel) is real. 

Denote by   a template and by   an image having    and    data points respectively. 

We may assume that in principle the image is larger than the template and that therefore 

     . Similarly       and       shall hold, where by    we denote the size of 

dimension   of the template and likewise    for the image. Finally, we assume   to be a 

sub-image or panel of   having the same size as  . 

As we have already mentioned, the correlation coefficient between   and   is: 

 

       
 

  

                           

        
 
        

        
 (1.26) 

Let us now consider the degenerate case where            and which means that 

either the template or the panel are constant, that is all their points are equal to one 

another and to their mean value. 

If the template is constant, then the problem is reduced to whether the panel is 

constant as well. This kind of examination can be carried out in a very simple way. We may 

therefore assume that the template is never constant and that        and      

     , having normalized it accordingly. A rather more common and interesting case is 

when the panel is constant. We express the correlation coefficient in the following non-

symmetrical formula: 

                              
   

 (1.27) 

where              . 

When the left-hand side vanishes, either the panel is constant with       , or the 

correlation coefficient is zero. Following the assumptions we have made regarding the 
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template, both cases show that the panel is uncorrelated – orthogonal to the template, thus 

the coefficient shall be set to zero. 

We are now in the position to fully describe the field with correlation coefficients 

between the template   and each and every panel   of the image  . It is going to be a two-

dimensional or three-dimensional table, depending on the dimensionality of the template 

and the image. From now on we will refer to the two-dimensional case, considering the 

three-dimensional case a simple generalization. We describe the translation of   relatively 

to the image   as           , where       is the position of a predetermined index 

point of   in image  . In other words,           denotes the position of the template 

points relatively to the index point. The latter can be arbitrarily chosen and may for instance 

be the first template point at the north-west corner. According to the above, each panel of 

image  , which depends on      , can be expressed as: 

                              (1.28) 

where    is the binary characteristic function of spatial support of the template. After 

substituting, we get the expression of all the correlation coefficients between   and each 

and every panel in the image: 

                                              

   

 (1.29) 

where       is a position in  , which traverses all  ,        and                    are 

the mean value and the standard deviation of            and        is the correlation 

coefficient between the template and the corresponding panel. The field with the 

correlation coefficients with local normalization (LCCs)          contains the collective 

information about the position of the greatest correlation between the template and the 

corresponding panel. The above is better shown in Figure 1.5, where we illustrate the LCC 

table between a two-dimensional image and a subsection of it. It is interesting to compare 

the above to Figure 1.3, which shows the cross-correlation between the same images, albeit 

without local normalization. 

 

Figure 1.5: LCC Table between an Image and a Template 
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1.5 Fourier Transform 

In this section we study the representation of discrete signals in the frequency domain. 

We begin with the definition and the description of the Discrete Time Fourier Transform 

(1.5.1). We move on to analyze the Discrete Fourier Transform (1.5.2). Finally, we talk about 

the well-known and most effective algorithm for the calculation of the Discrete Fourier 

Transform, the Fast Fourier Transform (1.5.3). 

1.5.1 Discrete Time Fourier Transform 

It is well-known that, in the frequency domain, a signal is expressed via the Fourier 

Transform. In the case where the signal is of discrete time (or space), such as the kind of 

signals we study in this thesis, the Fourier Transform takes the form of the Discrete Time 

Fourier Transform (or DTFT). For a signal     , the DTFT is defined by the following formula: 

 
                 

  

    

 (1.30) 

The original signal can be recovered via the inverse DTFT, as described by the following 

formula: 

 
     

 

  
             

 

  

 (1.31) 

We observe that the DTFT of a signal is a function of the continuous variable  , which 

expresses the angular frequency in           . It is interesting to notice that, unlike the 

Fourier Transform of a continuous signal, the DTFT is a periodic function of period   . 

We are going to generalize the definition of the DTFT for multi-dimensional signals. In 

the two-dimensional case, the forward and inverse DTFT are respectively defined as follows: 

 
                        

             

  

     

  

     

 (1.32) 

 
         

 

     
                                

 

  

 

  

 (1.33) 

Finally, in the three-dimensional case we get: 

 
                                 

                    

  

     

  

     

  

     

 (1.34) 
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(1.35) 

1.5.2 Discrete Fourier Transform 

The Discrete Fourier Transform (or DFT) is a mathematical analysis which applies to 

finite signals in the discrete time (or space) domain. The result is a second discrete signal, of 

the same size as the original, which expresses the original signal in the frequency domain. 

These two signals are equivalent in terms of their informational content and correspond 

uniquely to one another. Denote by      the original signal and by      its transform, we 

may symbolize the process of transforming as: 

     
   
       (1.36) 

For an original signal      of length  , the one-dimensional DFT is defined by the 

following formula: 

 
            

     
 

   

   

                        (1.37) 

The      signal can be fully recovered from its transform via the reverse DFT, as 

described below: 

 
     

 

 
      

     
 

   

   

                       (1.38) 

The aforementioned formulas are a pair of transforms and their usage reveals the 

equivalence between      and     , as it has already been mentioned. From the above 

formulas we can see that the DFT is essentially an  -point sampling of the DTFT in the 

interval       . Note that the DTFT is a continuous function in the frequency domain with a 

period of   . 

We are ready to generalize the definition of the above pair of transforms for multi-

dimensional signals. In the two-dimensional case, the forward and inverse DFT are 

respectively defined as: 

 

                    
 
       
   

 
       
  

    

    

    

    

      
          
          

 (1.39) 
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 (1.40) 

While for the three-dimensional case we get: 

 

                           
 
       
   

 
       
   

 
       
  

    

    

    

    

    

    

 

          
          
          

 

(1.41) 

 

            
 

      
               

       
   

       
   

       
  

    

    

    

    

    

    

 

          
          
          

 

(1.42) 

The DFT can be equally applied to either real or complex signals. In case the original 

signal is exclusively real-valued, the result of the transform exhibits the following useful 

property: 

                                    (1.43) 

where       denotes the complex conjugate of     . Furthermore we consider that 

         . The above property shows that, for a real signal, the DFT coefficients exhibit 

conjugate symmetry in relation to their “center” and thus half of them can be easily derived 

from the other half. As a result, half of the DFT coefficients suffice for fully determining the 

transform. This property is found quite useful when calculating transforms of real signals. 

Note that the conjugate symmetry property holds in a similar way in the multi-dimensional 

case too.  

In Figure 1.6 we see the DFT of a two-dimensional image. The DFT magnitude (in a 

logarithmic scale of luminance) and the DFT phase are shown in the form of two grayscale 

images. 

 

Figure 1.6: Example of Discrete Fourier Transform 
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1.5.3 Fast Fourier Transform 

The direct computation of a Discrete Fourier Transform of a signal of size  , as 

suggested by its definition, exhibits a complexity of order      , since for the calculation of 

each of the      points precisely   multiplications and     additions are required. The 

same is true for the inverse transform as well. Hence, this method is computationally 

expensive and more efficient alternatives ought to be searched for. 

In order to solve the aforementioned problem, a series of fast algorithms has been 

developed, which are collectively referred to by the title Fast Fourier Transform (or FFT). By 

the name FFT we mean any algorithm which calculates the  -point DFT (of any number of 

dimensions) in a          time. Up to this date a large number of such algorithms has 

been proposed, which cover a wide range of characteristics and/or methodologies. As an 

example we may refer to the Cooley – Tukey algorithm, whose basic idea is the “divide and 

conquer” methodology, that is the decomposition of an  -point DFT into a series of smaller 

DFTs. There exist though plenty of other FFT algorithms based on totally different 

mathematical principles, but a more detailed description of them is considered to lie beyond 

the scope of this review. 

The important element which we shall emphasize is that no  -point FFT performs more 

than        constant-time operations. The above holds in the general case of an FFT of a 

complex signal. We have already mentioned that if the signal to be transformed is real, the 

result of the transform exhibits conjugate symmetry (            ). There exist 

techniques which allow for the exploitation of the above property and the reduction of a 

real  -point FFT to a complex    -point FFT. Thus, using such techniques, a real FFT may 

not perform more than  

 
 
 

 
   

 

 
                          (1.44) 

constant-time operations. We will refer to this implementation of a real FFT as “half” FFT. 

1.6 Convolution – Correlation Theorem 

The convolution – correlation theorem is one of the most fundamental in systems 

theory. Its significance lies on the fact that it expresses the processes of convolution and 

correlation between two signals in the frequency – Fourier domain. Below we examine the 

form of the theorem in the cases of convolution and correlation separately. 

In the case of convolution, the theorem in a few words states that the DTFT of a signal 

which is equal to the result of the convolution between two other signals,      and     , is 

in fact the product of the DTFTs of      and     . To be precise: 
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                (1.45) 

On the other hand, in the case of correlation between signals      and     , the 

expression in the frequency domain is: 

          
    
                 (1.46) 

where         is the complex conjugate of       . 

The above theorem holds in a similar way in the case of convolution – correlation of 

multi-dimensional signals. 
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2 Algorithms 

In chapter 1 the fundamental image processing operations with which we will occupy 

ourselves were defined and described, i.e. convolution, correlation and correlation 

coefficients with local normalization. A common characteristic of these operations is the fact 

that their calculations express high computational complexity, often rendering their usage in 

computational environments problematic. The above further becomes evident in cases 

where the size of the images increases significantly (e.g. High Definition) or when the real-

time processing of the images is required. 

In this chapter we develop and analyze efficient algorithms for the fast computation of 

the image processing operations under examination. We focus our attention on the 

computation of convolution (2.1) and correlation coefficients with local normalization (2.2). 

2.1 Convolution 

2.1.1 Direct Method 

The first method for computing convolution that we will present is the direct method, 

as it directly results from the definition. As we have seen from the equation (1.13), the 

operation of convolving ν-dimensional signals is defined as such: 

                           

    

 (2.1) 

where                 
  and                 

 . Denoting by    and    with 

          being the lengths along every dimension of the signals      and      

respectively, the total sizes of the input and output signals are: 

       
 
       for      

       
 
      for      

               
 
    for      

Following the definition equation, the direct method for computing the convolution 

consists of the following steps: 
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ALGORITHM: Direct Method for Convolution 

1. We pad the image      with      zeros on each “side” along every dimension 

         , so that the length of each dimension results in          . 

2. We invert the template      along every dimension. 

3. We perform the inner product between the inverted template (     ) and the panel of 

the image that gets overlapped by the template and is of equal size to it. 

4. We repeat step 3 for every possible position of the template against the image. 

 

In Figure 2.1 the above process is depicted graphically. 

 

Figure 2.1: Depiction of the Direct Method for Convolution 

We will proceed with analyzing the computational complexity of the direct method. We 

saw that for each of the elements of the output signal, any of which corresponds to the total 

set of different “overlapping” positions between the two input signals, the computation of 

the inner product for    elements is needed, an operation that requires    multiplications 

and      additions. Consequently, the total number of operations for the computation of 

convolutions equals to: 

       multiplications 

          additions 

We observe that the direct method presents complexity of order        . 

It is evident that the complexity of the above method, as it has been presented 

analytically, is high and thus is not recommended as a general method for computing 

convolution. However, as a method it does express some points that, if exploited, may 

confer a rather satisfactory efficiency for some cases of computation. Those points are: 
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 The calculation of each one of the output elements is independent on the 

calculation of the others. This shows that there is the possibility for high 

parallelization of the total computation, rendering the implementation of this 

method notably suitable on array processors such as many graphics cards. 

 This method presents high spatial locality, something that can lead to the efficient 

use of the in-between cache memory. Indeed, neighboring elements of the output 

signal have as an input highly overlapped memory segments.  

 If the template      is sufficiently small, which something that occurs rather often in 

practice, the factor      of the complexity is also small and is mainly dependent on 

the size of the image     . So, it is possible for the method to prove to be efficient 

for small sizes   . Furthermore, we may note that the whole template is used to 

compute any of the output elements, something that presents us with the 

opportunity, if its size is sufficiently small, to have it loaded from the beginning onto 

a high speed memory (like L1 cache), significantly accelerating the total 

computation. 

The analysis of the above subsection may easily be adapted for the computation of 

correlation instead of convolution. Indeed, from the function (1.22) stems the fact that the 

application of the above algorithm without the inversion of the template      (step 2) 

results to the correlation of the two signals. This relationship may be used likewise for every 

algorithm for the computation of convolution. This confirms our theoretical statement that 

convolution and correlation are computationally equivalent, and thus we will not elaborate 

on the latter. 

2.1.2 Fourier Domain Method 

The next method we will present is based on the convolution theorem. From equation 

(1.45) we know that for convolution: 

          
    
                (2.2) 

Equation (2.2) indicates an alternative way for computing convolution, which we will be 

referring to as the “Fourier domain method”. This method consists of the transform of 

signals      and      to the frequency domain, the calculation of their inner product and 

finally the inverse transform to the temporal (or spatial) domain. 

In order to render this method computationally feasible we have to use DFT instead of 

DTFT. We remind the reader that a DFT of size   constitutes a sample of   points in a period 

of DTFT. Taking into account the above, we describe the steps of the algorithm for 

computing convolution of two one-dimensional discrete signals      and      of lengths    

and    respectively by using DFT: 
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ALGORITHM: Fourier Domain Method for Convolution 

1. We pad the two signals with zeros on their end, such that both of them are of length 

           (as is the result). 

2. We calculate the   -point DFTs of the two signals,      and     . 

3. We multiply point-by-point the results of the DFTs so as to create the product 

             . 

4. We calculate the inverse DFT of     . This result will be equal to               . 

 

In Figure 2.2 the above algorithm is depicted in the form of a flow chart. 

 

Figure 2.2: Fourier Domain Method for the Computation of Convolution 

The description of the above algorithm regards the computation of convolution of one-

dimensional signals. In the case we want to use the same process to compute convolution of 

signals of more dimensions, the process is similar. Specifically, let      be a ν-dimensional 

discrete signal with dimensions   ,   , …,    and      be a ν-dimensional discrete signal 

with dimensions   ,   , …,   . The only difference is that we pad the two signals with zeros 

on their ends, such that their every dimension is of length           ,       

    , …,           , and we use forward and inverse DFTs of size         

  . 

Let us proceed to the analysis of the computational complexity of the above method. 

The total size of the convolution will be       
 
   . We saw that the computation of 

three DFTs (two forward and an inverse) and one point-by-point multiplication are needed, 

all of size   . The transforms may be calculated via FFT, with each one demanding 

         operations. If we take into account the fact that the signals     ,      and      

are all real, we observe that we can use “half FFTs instead of regular ones, so that each FFT 

requires only            operations. For the multiplication    operations are needed, one 

per element. Thus, the total number of operations equals to: 

                                           (2.3) 

We assume that the linear factor that is due to the multiplication is negligible relative to 

the FFT factor. We notice that this method is of complexity of order           . 
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Regarding the implementation of the above algorithm in a parallel environment, it is 

dependent on the parallelizing potential of the FFT. Generally, the FFT is considered to be a 

rather “difficult” algorithm for parallelization. However, we assume that the analysis of the 

parallelization of FFT is out of the bounds of this dissertation. As for the multiplication, it is 

an operation with a high potential for parallelization on element level, rendering it an ideal 

operation for implementation on vector processors. 

Finally, regarding the computation of correlation instead of convolution, it can be done 

likewise by inverting the template before the application of the above (or any) algorithm. 

Especially in the case of the algorithm under examination, however, the computation may 

alternatively be performed based on the correlation theorem and the equation (1.46): 

          
    
                 (2.4) 

From this equation and the definition of DFT stems the fact that for the computation of 

correlation instead of convolution the two following differentiations must be made on the 

basic algorithm: 

 The point-by-point multiplication is performed between the DFT of      (    ) and 

the complex conjugate of the DFT of      (     ). 

 The final result of the algorithm must be cyclically shifted by      elements 

towards the positive direction in every dimension  , where          . Cyclical 

shift means that the values that “exit” out of bounds return from the opposite end. 

We should note that the conversion to complex conjugate may be incorporated in the 

process of the conjugate multiplication so that it does not have any impact on the total 

number of operations of the basic algorithm. On the other hand, a cyclical shift has 

infinitesimal cost as an operation as it just rearranges elements in memory.  

2.1.3 Image Streaming 

In practice it is very often the case in which a template is applied via the operation of 

convolution (or correlation) on a multitude of images of the same size. A typical example 

would be the process of video data, where the convolution of each frame of the video with 

the same template is very frequently required. A series of images of the same size to be 

processed will be called an “image stream” and their processing with the same template will 

be called “streaming”. 

By taking into account the frequency of streaming in practice, we gain new possibilities 

for improving the methods for image processing via convolution/correlation. Next we 

examine how and how much the algorithms for computing convolution that have been 

presented above may achieve better results when applied to a stream of images instead of 

individual images. 
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We begin by examining the direct method. When processing a stream, convolution 

must be computed using the method for each image separately, as if they were individual 

images. We therefore notice that that the direct method does not appear to improve in the 

case of streaming. 

Concerning the Fourier domain method, the case is different. We notice that the FFT of 

the template (    ) has to be calculated only once for the whole stream. Thence, for any 

new image: 

1. the FFT of the image must be computed 

2. the point-by-point multiplication between the two FFTs must be performed 

3. the inverse FFT of the product must be calculated 

In Figure 2.3 the flow chart of the Fourier domain method is depicted anew, this time 

having colored the part that needs to be calculated only once for the whole stream. 

 

Figure 2.3: Fourier Domain Method for the Computation of Convolution with Streaming 

We therefore notice that for each new image there is a need for the computation of 

two “half” FFTs and one multiplication. Assuming the number   of the images is    , the 

number of operations of the algorithm per image is reformed to: 

                                       (2.5) 

The above constitutes a significant improvement relative to the            

operations that would be needed were the algorithm be applied individually per image. With 

this method we expect an improvement of the total processing time of the stream by 

                      

           
 
   

   
       (2.6) 

2.1.4 Method Comparison 

We will proceed to the comparative analysis of the two methods for computing 

convolution that have been presented in the above subsections. We remind the reader that 

the total number of operations that are required for each one is: 
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 Direct method:         

 Fourier domain method:             

 Fourier method with streaming:          

In the direct method we take into account the number of multiplications, assuming the 

total execution is determined mainly by them. For our analysis we will assume that    

  , something that is frequently true in practice. Therefore we have      . 

From the above we notice that the execution time of the direct method presents a 

significant dependency on the size of the template   . For small templates we expect a 

small execution time which will increase significantly though as the template size becomes 

larger. 

On the contrary, the Fourier domain method presents very small dependence on the 

size of the template. Its execution time is determined mainly by the size of the image   . 

We expect that the execution time will be increasing infinitesimally to none at all relative to 

the increase of template size. 

The above analysis indicates that there is a critical template size   
     that marks the 

“preference bound” of one method against the other. For a given image size   , this size 

theoretically results as follows: 

 
    

                  
             

     
       

              (2.7) 

Respectively, if on the above analysis we assume image streaming, the critical size 

results in   
           . As a final conclusion, we may state that when      

     the 

direct method is deemed preferable whilst if      
     the Fourier domain method is 

chosen. 

2.2 Correlation Coefficients with Local Normalization 

2.2.1 Direct Method 

In the present subsection we will present the direct method for the computation of the 

table of correlation coefficients with local normalization between two-dimensional or three-

dimensional images. We remind the reader that each element of this table is described by 

the equation (1.26): 

 

       
 

  

                           

        
 (2.8) 
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where   corresponds to the template and   is a panel of the image of the same size as  . 

We additionally have: 

      
 

  
           the mean value of panel   

       
 

  
            

 

    the standard deviation of panel   

Likewise the mean value and standard deviation of the template   are defined,      

and      respectively.  

We rewrite equation (2.8) in the form: 

 
         

         

       
  
          

       
 

   

             
   

 (2.9) 

We notice that the individual correlation coefficient equals to the inner product between 

the signals    and   , which result by normalizing   and   respectively to a mean value of   

and a standard deviation of       , where    is the number of their elements. This 

formula proves that the computation of the table of correlation coefficients may be 

performed by variating the direct method for computing correlation, i.e. the one presented 

in subsection 2.1.1. The variation consists of the normalization each time of   and   before 

the extraction of their inner product. From a computational viewpoint, the normalization of 

the template   does not pose a problem, as it may be performed only once in the beginning 

and thus the normalized template    can be used for the whole image. However the same 

does not occur regarding the normalization of the panels  , as this must be performed 

separately for each individual panel of the image. Given the large number of these panels, 

one may understand that the immediate use of the direct method as is presents 

prohibitively high computational complexity. Specifically, with this method there would be a 

need for three “passes” of each panel  : the first to calculate the mean value     , the 

second to calculate the standard deviation      and the third to normalize it and calculate 

its inner product with the template   . 

We will attempt to improve the direct method for the computation of correlation 

coefficients with local normalization via an algebraic reformulation of the definition 

equation. By assuming that the template   is normalized once in the beginning, we rewrite 

the equation (2.9) as it follows: 

 

         
         

       
       

   

  
                 

     
 
  

            
 

      

 

 
                             

             
 

   

 
                          

             
 

   

 (2.10) 
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We already know that        . Therefore, the correlation coefficient is given by the 

following formula: 

 
       

              

             
 

   

 
(2.11) 

We notice that the nominator of equation (2.11) corresponds to the inner product 

between   and   , without previous normalization of  . Until now we have managed to 

“transpose” the order of the operations of correlation and normalization, by having the 

latter performed after the former. As of now two “passes” of the panel   are required: the 

first calculates the mean value      and the inner product with the template while the 

second calculates the standard deviation     . Continuing our effort for optimization, we 

get the radicand of the denominator of the right part of the equation (2.11) and we rewrite 

it in the following way: 

 
            

 

   

       
             

      

   

      
 

   

           
   

       

   

 

      
 

   

     
        

          
 

   

    
     

      
 

   

    
 

  
     
   

 

 

      
 

   

 
 

  
      
   

 

 

 

(2.12) 

Therefore, the initial definition formula of the correlation coefficient with local 

normalization results in the following equal: 

 
       

              

      
 

    
 
  
          

 
 

(2.13) 

As of now, all the elements that are required for the computation of        may be 

computed using the equation (2.13) and by performing a single pass of the panel  . 

Consequently, we are in a position to be able to present in its completeness the optimized 

direct method for the computation of the table of correlation coefficients with local 

normalization: 
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ALGORITHM: Direct Method for LCCs 

1. We normalize the template   once to mean value of   and standard deviation of 

     . 

2. We pad the image with zeros on each “side” along every dimension, in the way 
described in step 1 of the direct method for convolution. 

3. For each individual panel   of the image we calculate in one and only pass: 

-   the inner product with the normalized template    
-   the sum of all the elements of   
-   the sum of the squares of all the elements of   

4. We compute the correlation coefficient        from the equation (2.13). If the 

denominator equals to  , we set          (see subsection 1.4.2). 

5. We repeat steps 3, 4 for all the panels of the image. 

 

We proceed to the analysis of the computational complexity of the above algorithm. 

Regarding the size of the table of correlation coefficients the same apply as with 

convolution/correlation: if   ,    are the dimensions of image   and   ,    are the 

dimensions of the template  , the size of the table     is: 

                       (2.14) 

For each element of the table     the following are required: 

    multiplications and      additions for the calculation of the inner product 

between   and    

      additions for the calculation of the sum of the elements of   

    multiplications and      additions for the calculation of the sum of the 

squares of the elements of   

We assume that the implementation of the formula for the computation itself of the 

coefficient   in the end of each “pass” is negligible related to the operations required during 

the “pass” itself. We furthermore assume that the template   is small (something that often 

occurs in practice) and so its normalization is negligible related to the main computation. So, 

according to the above, for the complete computation of the table of correlation coefficients 

with local normalization the following are required: 

        multiplications 

             additions 

Therefore, the total computational complexity of the algorithm is of order        . 

We remind the reader that the direct method for computing convolution/correlation is of 

the same rank but with smaller constant factors. 

Something noteworthy is that the computation of each element of the table     is 

independent of the rest, something that means that the algorithm may be parallelized on 

element level, rendering its implementation on a vector processor suitable. Additionally, the 

algorithm presents further advantages, similar to those of the direct method for computing 
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convolution/correlation. Those advantages are the high spatial locality (neighboring output 

elements use overlapping input data) and the good behavior for small templates  . The 

reader may refer to the subsection 2.1.1 for the further analysis of these advantages. 

2.2.2 Fourier Domain Method 

In subsection 2.1.2 we described an alternative method for computing 

convolution/correlation, the better part of which computations is performed in the Fourier 

domain. In this subsection we will attempt to develop a similar method for the computation 

of correlation coefficients with local normalization.  

As has been thoroughly described in subsection 1.4.2, each individual panel   of the 

image that corresponds to the position       may be mathematically represented in the 

following way: 

                              (2.15) 

where   is the full image and    is the binary-valued characteristic function of the spatial 

support of the template. By substituting the above relation in the equation (2.13), we get 

the description of the complete table of correlation coefficients          between the 

template   and the image   as follows: 

 
       

                     

                        
 
  
                       

 
 

(2.16) 

By meticulously observing the equation (2.16), we ascertain that: 

                   

   

      (2.17) 

                    

   

       (2.18) 

                   

   

      (2.19) 

This means that the three individual sums, when expanded to the full image, may be 

described in the form of correlations. So, by substituting the equations (2.17), (2.18) and 

(2.19) in equation (2.16), the table of correlation coefficients may alternatively be written as 

follows: 

 
       

    

         
 
  
      

 

 
(2.20) 
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The meaning of equation (2.20) lies in the fact that it lends us the opportunity to 

“transfer” the computation in the Fourier domain. Indeed, we have seen that correlation is 

equal to convolution where one of the two signals is inverted along every dimension. So, by 

applying the convolution theorem we have: 

                      (2.21) 

        
                (2.22) 

       
               (2.23) 

Assuming we have inverted the signals    and    before their transform. Of course, as the 

signal    is filled with units, its inversion would equal to the signal itself. So the only signal 

that really needs to be inverted is   . We notice therefore that by applying equations (2.21), 

(2.22) and (2.23) the performance of the better part of the computations described by 

equation (2.20) in the Fourier domain and not in the spatial domain is rendered possible. 

At this point we have achieved in developing an algorithmic method for the 

computation of the table of correlation coefficients with local normalization that has similar 

features as the Fourier domain method for the computation of convolution that has been 

described and analyzed in subsection 2.1.2. Therefore, based on the analysis until now, we 

are at a position to fully describe the Fourier domain method for the computation of the 

table of correlation coefficients with local normalization. The individual steps of this 

algorithm are the following: 

ALGORITHM: Fourier Domain Method for LCCs 

1. We normalize the template   to mean value of   and standard deviation of       and 

then we invert it along every dimension. 

2. We form the table   , which will be of the same size as the template and have unit 

value in every position. 

3. We pad the tables   and    with zeros on their end so as their total size is equal to the 

result’s. 

4. We perform the FFTs of   and   , those being      and       respectively.  

5. From the table   (image) we form the table   . We pad both of them on their ends with 

zeros so that their sizes are equal to the result’s. 

6. We perform the FFTs of   and   , those being      and       respectively. 

7. We calculate the point-by-point products           ,             and           . 

8. We perform the inverse FFTs of the three above products. 

9. We compute the final result using the equation (2.20). If the denominator equals to 

zero, the correlation coefficient is also set to zero value (see subsection 1.4.2). 
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This algorithm is also presented in the form of a flow chart in Figure 2.4. 

 

Figure 2.4: Fourier Domain Method for Computing LCCs 

We will proceed to the analysis of the computational complexity of the above 

algorithm. We denote by    the size of the table of correlation coefficients, which at the 

same time equals to the size of all the individual tables that take part in these computations. 

We notice that, totally,   FFTs are needed,   direct and   inverse. By taking into account the 

fact that the direct FFTs are applied to real-valued signals and that the inverse FFTs result in 

also real-valued signals, we notice that all of the FFTs can be implemented as “half”, as has 

been stated in subsection 1.5.3, with each one requiring not more than            

operations. Furthermore, the algorithm incorporates the calculation of three point-by-point 

complex multiplications (step 7), squaring (step 5) and the final computation of the output 

table (step 9). The final operations that have been referred to all have linear complexity 

regarding size   . Finally, assuming the template   is sufficiently small in size (as it typically 

occurs so in practice), we will assume that its normalization and inversion (step 1) is of 

negligible time. Based on the above, the total number of operations of the algorithm results 

in: 

                                               (2.24) 

which means that the total complexity is of order           . The constant factor   of the 

above relation is due to the linear complexity operations and its value may be considered 

sufficiently small such that the linear factor may be omitted. 

As for the parallelization of the algorithm, the same applies as with the Fourier domain 

method for the computation of convolution/correlation. The linear complexity operations 

(complex multiplication, power of two, division, square root extraction, etc.) can all be 

parallelized on element level. The FFTs on the other hand are more “difficult” in their 

parallelization, but as we have already stated this matter is out of the bounds of this 

dissertation. 
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2.2.3 Image Streaming 

Next we will analyze the performance of the two algorithms for computing correlation 

coefficients with local normalization that have been described in the above subsections in 

the case of image streaming. We remind the reader that image streaming is the case of a 

series of images of the same size (for example video) being processed by the same template. 

This case is rather frequent in practice; therefore it is particularly interesting to examine how 

much the aforementioned algorithms can be rightly adapted so as to achieve better overall 

performance. In the following we examine the two algorithms separately. 

We begin with the direct method. We notice that the normalization of the template 

(step 1) can be performed only once for the whole stream. Thence, the algorithm must be 

fully applied on each image. However, as the template typically is sufficiently small, its 

normalization comprises a process that costs very little in time. Therefore we notice that the 

direct method is not gaining any significant advantage from streaming in contrast to the case 

where it would be applied as is on every image of the stream separately. 

Regarding the Fourier domain method, things are more interesting. We notice that the 

normalization and the inversion of the template, the formation of the table    and the 

computation of the FFTs of the template and the    can be performed only once for the 

whole stream. The above operations correspond to the steps 1 to 4 of the algorithm. 

Thence, for each image there is the need to perform anew only the steps 5 to 9. This is 

presented schematically in Figure 2.5, where the flow chart of the Fourier domain method is 

presented anew, this time having colored the part of the algorithm that only needs to be 

computed only once for the whole stream. 

 

Figure 2.5: Fourier Domain Method for Computing LCCs with Streaming 

Although the operations of normalizing and inverting the template are negligible, the 

saving of computing   of the   FFTs totally is particularly significant, specifically of      and 

     . So, assuming the number   of the images is    , the number of operations of the 

algorithm per image is reformulated to: 

                                                   (2.25) 
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Where the constant factor   corresponds to the linear complexity operations regarding    

and is sufficiently small such that the linear factor may be omitted. The above consists a 

significant improvement against the             operations that would be required were 

the algorithm be applied separately on each image. With this method we expect an 

improvement of the total processing time by 

                          
            

 
 

    
       (2.26) 

2.2.4 Method Comparison 

In this subsection we will compare the methods that have been presented until now for 

the computation of correlation coefficients with local normalization regarding their total 

number of required operations. We remind the reader that the number of operations 

required from each method equals to the following: 

 Direct method:          

 Fourier domain method:              

 Fourier method with streaming:             

In the direct method we only take into account the number of multiplications, assuming 

the total execution time is defined mainly by them. We will further assume that       (as 

it typically occurs in practice) and thus      , where    is the size of the image. 

It is noteworthy that the above computational complexities are, regarding their form, 

similar to the complexities of the respective algorithms for computing 

convolution/correlation. Their differentiations lie specifically on their constant factors, which 

are presently larger (due to the need, of course, for local normalization). So, the further 

analysis and comparison of the methods adheres to the same concept as with the analysis in 

subsection 2.1.4 regarding convolution/correlation. 

We begin with the analysis of the direct method. We notice that its complexity is 

dependent in a proportionate way on the size of the template   . This means that for small 

templates the total number of operations will be small and the method will be temporally 

efficient.  Instead, as the size of the template increases, the method will all the more be 

rendered unsuitable. 

The complexity of the Fourier domain method on the other hand presents small 

dependency on the size of the template. Instead, the total number of operations is almost 

inclusively dependent on the size of the image   . We expect therefore the execution time 

of this method to be increasing least to none as the size of the template increases. 

The conclusion of the above reasoning is similar to the conclusion we had stated 

regarding the computation of convolution/correlation. The existence of a critical size of 
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template   
     that signifies the “preference bound” between the two methods is become 

evident. For a given image size of   , this critical size theoretically results as following: 

 
     

                   
              

     
       

               (2.27) 

Likewise, if in the above analysis we assume image streaming, the critical size results in 

  
              . As a final conclusion, we can state that when      

     the direct 

method is deemed suitable while if      
     the Fourier domain method is chosen. 
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3 Parallel Architectures 

The continuous demand for increasingly powerful computational systems gave birth, 

among others, to the idea of using many Central Processing Units (or CPUs) that operate in 

parallel. Of course, a lot of suggestions have been made over the years on how this quite 

generic idea could be realized. There exist issues such as whether we consider these CPUs as 

separate computers accompanied by separate input/output units each, as several CPU chips 

inside a single computer that share its various resources, or even as a single control unit and 

a program counter that direct many Arithmetic and Logic Units (ALUs) in such a way that 

they perform the same operation on large sets of data simultaneously. After all this, basic 

issues are the nature of the CPUs and their privileges over various resources (memory, 

input/output units, etc.), their number and their mode of intercommunication. There exist 

quite a few different parallel architectures, that is implementations of each of the 

aforementioned perceptions, with a variety of capabilities, which nevertheless does not 

make one better than the rest but rather more appropriate for certain kinds of problems. 

Given their substantially increased computational power and their continuous 

expansion, parallel architectures are the most suitable for a high-performance library. 

Therefore, among the wide spectrum of today’s available modern parallel architectures, we 

attempt to select those that will best support the development of the FLCC library and the 

implementation of its algorithms. The two basic computational platforms that we have 

concluded on are the multi-core processors and the graphics processing units. The criteria 

that led to this selection are their power, their suitability for our calculations and their 

widespread usage. 

 In this chapter we thoroughly describe the two architectures of parallel computation 

that we make use of. We will talk about their characteristics, their capabilities and their 

programming model. In particular, in section 3.1 we study multi-core processors while in 

section 3.2 we move our attention to graphics processing units. 

3.1 Multi-core Processors 

3.1.1 Hardware Structure 

Multiprocessors are parallel systems which are composed of two or more CPUs which 

share a common physical memory of RAM type. The communication among the CPUs is 
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mainly done through this memory, which is hence called shared memory. We say “mainly” 

because, even though there exists a common physical memory, communication among CPUs 

may also be done and/or with message passing. Communication through shared memory is 

done as follows: all CPUs, or to be more precise the processes which run at a given moment 

on the CPUs, have equal access to the shared memory and may read or write data to it. In a 

few words, all CPUs share a common address space. It is noteworthy that multiprocessors 

are quite popular and widespread exactly thanks to the simplicity of the CPUs 

intercommunication.  

In the above there exist various issues of data consistency among CPUs. For instance, 

two CPUs may try to write at the same time in the same memory location. Also, each CPU 

could have a cache memory of its own. That means that the set of data which is stored in the 

cache has to be updated according to the changes in the data in the main memory. The 

above may lead to problems if the mode in which the multiprocessor deals with such 

processes is not well predicted. We will not proceed though in such analysis since it is out of 

the scope of this thesis. 

A multiprocessor has access to many modules and levels of memory, as well as to 

input/output devices. In case where all CPUs are equivalent, they equally have access to 

each available memory level (with the possible exception of each one having a dedicated 

cache memory) and input/output device and are also viewed as equal by the operating 

system, the system is called a symmetric multiprocessor or SMP. In Figure 3.1 the structure 

diagram of a simple SMP with   similar processing units is presented. In the same figure we 

can also observe the internal architecture of a single CPU, which is composed by: the control 

unit, responsible for the control flow of a program, the arithmetic and logic unit, responsible 

for the execution of arithmetic and logic operations, and the registers which are small and 

fast memory modules in which the data to be processed are fetched. 

 

Figure 3.1: Structure Diagram of a Simple SMP 
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According to Flynn’s taxonomy for parallel computers, multiprocessors are described as 

Multiple Instruction Multiple Data or MIMD systems. Flynn’s taxonomy is derived by the 

examination of two notions: the instruction streams (program counters) and the data 

streams. A MIMD system has more than one instruction streams and more than one data 

streams. This means that each CPU is capable of simultaneously executing a totally different 

process on a totally different data set. 

A multi-core processor is a single chip in which more than one full CPU has been 

incorporated. In this case the CPUs are called cores. Very often the cores do not share cache 

memories but they do share the same main memory. We may hence characterize them as 

multiprocessors. To be precise, multi-core processors are often called Chip-Level 

Multiprocessors or CMPs. Also, the majority of today’s marketed multi-core chips are SMPs. 

It is important to note that multi-core processors are today notably widespread even in 

Personal Computer (PC) environments and their growth continues at a high pace. 

We have talked about the various memory levels of multiprocessors, which do not 

differ than those of a classic non-parallel processor, since the notions of RAM, cache 

memory and registers are present in both architectures. What differs is the need for 

effective modes of communication among the CPUs and for data consistency. As it has been 

mentioned, communication is mainly preformed through RAM, which is common for all the 

CPUs. On the contrary, each CPU has its own cache memory and its own registers. In Figure 

3.2 we see the memory hierarchy for multi-core processors and a qualitative presentation of 

the differences in speed and size among different memory levels. 

 

Figure 3.2: Memory Hierarchy of a Multi-core Processor 

We have already discussed in chapter 2 the theoretical reduction in the execution time 

of the algorithms if they are meant to run in parallel. Thus, according to the above, multi-

core processors are a powerful choice as implementation architecture for these algorithms, 

since they offer the computational power of an efficient parallel architecture, they 

demonstrate easy communication among their cores and they are suitable to be used for 
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the solution of many different problems. Also, they are quite widespread, which makes them 

available to a vast user group and of course it makes a variety of other tools that have been 

developed for them available too. Of course the sole existence of the hardware without the 

appropriate software taking advantage of its capabilities is not enough, as we will see in the 

following section. 

3.1.2 Multi-threading 

3.1.2.1 Processes 

We call a sequential process or just process an instance of a running program, which 

contains the current values of the program counter and the program variables. In other 

words, a process is the combination of a control flow or thread and a private address space 

which is not visible to other processes. 

The address space is the entire set of addresses which can be used by a process to 

perform a certain transaction with memory. As a result, the address space of a process may 

correspond to main memory size much larger than the existing one. This is overcome with 

memory paging. The address space is further divided into certain main sections that each 

contains addresses for diverse data types. For a UNIX/Linux system these are as follows: 

 The stack section, which contains the stack being used by the main control flow of 

the process. The local variables of the program functions are located in the stack, 

with those belonging to the current function being on top of the stack. 

 The text section, which contains the addresses for the code of the program in 

execution. 

 The data section, which contains the already initialized global variables of the 

program in execution. 

 The heap section, which contains the heap being used by the main control flow of 

the process and in which memory mappings of files or variables of dynamic length 

take place. 

Furthermore, the process also maintains a private program counter and a stack pointer. 

In the upper part of Figure 3.4 we can see a schematic diagram of an address space of a 

process with one control flow. 

Every time the user requests that a program be executed, the operating system creates 

a process which contains in its address space all the necessary information for the program’s 

successful execution. We referred to the process as an instance of some program and this is 

evident by the fact that if the same program is called multiple times, a distinct process will 

be created for every call. 



  Parallel Architectures 

55 

A process, at any time, is being served by a virtual CPU. We say virtual because usually 

in a computer there is a far greater number of processes being executed at any time than 

the number of actual existing CPUs. The various processes are being served in turns by one 

CPU according to a certain scheduling algorithm and thus it seems that all are being 

executed in parallel while in reality each CPU serves only one process at a given moment 

(this is most evident when there is not but one CPU). Of course if there exist in fact more 

than one CPUs, an actual hardware parallelism takes place in the processes execution, 

simultaneously with the pseudo-parallelism we previously described. 

This rotation of the processes being served by the CPUs is called multiprogramming. In 

each CPU there exists a single actual program counter, whilst at the same time each process 

maintains its own program counter and therefore knows at what point of its execution it is. 

When the time comes for a certain process to be served by some CPU, its program counter is 

loaded in the actual program counter. When, later on, another process’s turn comes to keep 

that CPU busy, the old process is responsible for the storing of its own program counter. 

The reason why multiprogramming is useful is that it maximizes the time percentage 

that the CPU is being used. For instance, if a process needs to wait for the completion of 

some input/output operation it would not be particularly effective to keep all the others 

waiting too. So, some other process takes the place of the waiting one and makes use of the 

now available CPU. This technique offers a lot to the maximization of CPU usage because 

usually input/output operations take much longer than a single instruction cycle. 

3.1.2.2 Threads 

As it has been mentioned, processes are defined as instances of a certain program and 

have one control thread and their own address space. Sometimes it is useful or even 

necessary to have more than one threads which are able to be executed in parallel in the 

address space of the same process. A basic reason, analogous to the reason for the pseudo-

parallel execution of the processes, is maximizing the CPU usage. Furthermore, a thread can 

be created and destroyed much faster than a process. This happens because the necessary 

overhead for a thread’s creation has already taken place when its mother-process was 

created. So, threads are considered lightweight as long as execution is concerned. The 

presence of multiple threads within a process is called multithreading. Figure 3.3 makes 

clear the possibility of having one or more independent processes simultaneously and the 

idea of multithreading.  

The usefulness of threads becomes truly evident if we consider the possibility of their 

actual parallel execution by parallel hardware, namely a multi-core processor. This possibility 

can often be properly exploited in order to achieve high computational performance. 

Indeed, if we deal with a problem which can be broken down to smaller pieces – 

subproblems which in turn can be solved independently, the parallel solution by distinct 

threads running in parallel offers the total solution in only a fraction of the total execution 

time. It is true that the above idea could also be implemented with parallel processes 
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instead. Nonetheless, given their substantially faster creation and destruction and their 

easier management, threads are in principle proven to be a more effective choice for high 

performance applications. 

 

Figure 3.3: Combination of Processes and Threads of Different Numbers 

Something that deserves to be mentioned here is that the various threads of a process 

are not independent since they share a common address space and hence the same global 

variables. It is the programmer’s responsibility to create threads which cooperate with one 

another and of course manage their common data in a consistent and reliable way. 

 

Figure 3.4: Address Space of a Process with One or More Threads 
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The difference in the address space of a multi-threaded process in comparison with a 

single-threaded one is that the stack section of the former is divided in as many subsections 

as the number of threads. Thus, each thread maintains its own private stack. Figure 3.4 

makes the stack section’s division clearer. Needless to mention is that each thread within 

the process also retains its private program counter and stack pointer.  

3.1.2.3 POSIX Threads 

The need to write portable programs with threads is a rather obvious one. For that 

reason the standard IEEE POSIX 1003.1c has been developed that enables the usage of 

threads in the C language and is supported by UNIX/Linux systems. Threads that follow this 

standard are known as POSIX Threads or pthreads; they are notably popular and are those 

that are used in the FLCC library. 

Let’s discuss some practical issues on pthreads usage. A program in C when executed is 

considered to be a process with one thread or control flow. Pthreads library provides the 

programmer with a function for the creation of a new thread. This function is 

pthread_create(…) and can be called several times in order to create as many threads 

as needed, one for every call. The threads are able to have a completely different control 

flow (or simply to execute different programs) and different access to data and finally they 

are scheduled according to the operating system. The specific function which every new 

thread will execute is determined by a pointer to it, which is passed as an argument to 

pthread_create(…). 

As for the data, each thread has access to all the global variables of the process to 

which it belongs, which in turn are declared in the initial control thread. Furthermore 

pthread_create(…) accepts a pointer as an argument which points to a unique data 

type to which the thread has access. With that in mind, the way to pass more than one 

pieces of data to a thread is to create a data structure containing them and set the 

aforementioned pointer to it. It is up to the programmer to pass as an argument to every 

thread an arithmetic identity. Here we see the MIMD type implementation, with the threads 

having the ability to run different programs on different data. Note that in case more than 

one threads share some common data, issues of competition arise among them. The 

programmer may avoid them, using mutual exclusion and condition flags which are already 

provided by the pthreads library. 

Finally, there exist several ways of terminating and synchronizing the already created 

threads. A typical one would be the following: the main thread, after having created some 

other thread using pthread_create(…), may continue with its own tasks and then wait 

for the new thread to finish its work. This waiting is achieved by calling the function 

pthread_join(…), whose arguments indicate which thread to wait for. The new thread 

on the other side, after having finished its own work, may declare that it has finished and 

terminate by calling the function pthread_exit(…). This way the two threads 
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synchronize and the main thread can continue with its own control flow. Figure 3.5 shows an 

example of the creation of two new threads by a main one and later on their joining with it. 

 

Figure 3.5: Creation and Synchronization of Pthreads 

There exist more ways of thread termination, such as their canceling by the main 

thread, but we will not proceed to further analysis. 

3.1.3 FFTW 

FFTW (Fastest Fourier Transform in the West) is a library for the C programming 

language which offers fast computation of one-dimensional and multi-dimensional DFTs, 

was developed by Matteo Frigo and Steven Johnson of MIT and was first published in 1997. 

It uses a variety of different FFT algorithms in order to carry out computations, a basic one 

among them being Cooley – Tukey’s FFT that has been already mentioned. 

FFTW has a remarkable performance independently of the machine it runs on and there 

are three fundamental ideas behind this success. First, the transformation is computed by an 

executor composed of highly optimized code segments in C (which the creators call 

codelets). Secondly, a planner calculates a fairly efficient way (the so called plan) to combine 

the executor’s codelets, adapting to the architecture on which it runs (the specific machine). 

Last but not least, the codelets are generated by a codelet generator which has been written 

in the language Objective Caml (an ML dialect) and takes into account the special 

characteristics of the machine it runs on to generate them. This way, FFTW is able to run 

effectively on a wide spectrum of diverse machines. 

We will analyze FFTW’s plan-execute model a bit more, in the form it appears from the 

user’s perspective. The central idea is that the user interacts externally with FFTW only 

through planners and executors. FFTW provides the user with functions for the planning and 

execution of transforms of one or more dimensions. It should be noted that, internally, 

FFTW does not use only one specific algorithm to compute the DFTs. Instead, through the 

planner it adapts to the capabilities of the hardware in order to achieve maximum 

optimization and selects every time the most suitable algorithms for the calculation. Thus, 
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the total process of transforming is divided in two sections. First, FFTW’s planner finds the 

fastest way for the calculation of a transform of a certain size on the user’s machine. The 

planner then creates a data structure, the so called plan, which stores the above 

information. Later on, the plan can be executed by the executor and the transform is 

calculated for specific data according to the information from the plan. The same plan can 

be used for the same size, but not necessarily for the same data, as many times as needed. It 

is evident that a great performance advantage is given to problems which require many 

different transforms of the same size, a case found quite often in practice, since the planning 

process can be executed only once and hence its time cost can become easily acceptable. 

We use FFTW in FLCC internally in order to calculate the DFTs which participate in the 

Fourier domain methods. We selected FFTW because it is a highly optimized library, notably 

effective and it also offers the possibility of parallel execution via pthreads. Also, we adopted 

the plan-execute model in FLCC so the planning cost of FFTW is fully contained in the 

planning step of FLCC. More about the functionality of FLCC can be found in the following 

chapter. 

3.2 Graphics Processing Units 

3.2.1 Hardware Structure 

Graphics Processing Units or GPUs are highly parallel, massively multithreaded, multi-

core (also referred to as many-core) processors with a substantial computational power and 

large memory bandwidth. A GPU, due to its highly parallel character, is often much more 

efficient in comparison with a CPU regarding computations of high parallelizability. A usual 

example of such computations is graphics rendering, which historically has been GPU’s main 

target application, hence the name “GPU”. Nevertheless, in principle any application that 

can be expressed as highly parallel data calculations has the ability to be efficiently executed 

on a GPU (in other words, any program which is executed in parallel on a large number of 

data points simultaneously, with each data point being assigned to a parallel thread). Thus, 

given its relatively recent technologic development, GPU has moved past graphics rendering 

to become a general-purpose parallel processor, often being referred to as General Purpose 

GPU (GPGPU). 

In subsection 3.1.1 we saw that multiprocessors, as viewed by Flynn’s taxonomy of 

parallel architectures, belong to the MIMD category. GPUs on the other hand are classified 

in the second practically used parallel architecture, the so called SIMD or Single Instruction 

Multiple Data. This architecture may be described in a few words as follows: there exists a 

single control unit (a program counter) which sequentially executes the program’s 

instructions, albeit the instructions operate on a multitude of elements at the same time. It 

is considered that computers following SIMD architecture are ideal for dealing with scientific 
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problems of high computational load in which operations on data structures such as vectors 

or arrays are expected to appear often.  

We focus on the GPU architecture that has been used in this thesis, the one that has 

recently been introduced by the company NVIDIA. A GPU of this architecture is implemented 

as an array of similar multithreaded multiprocessors, each one in turn being composed by a 

number of processing units (cores). These multiprocessors follow an architecture which 

NVIDIA’s experts refer to as Single Instruction Multiple Thread, or simply SIMT. SIMT 

architecture is relatively similar to the well-known SIMD. The difference is that each thread 

running on the GPU is able of having branches, albeit with a possible performance cost. The 

overall result of this structure is a closed processing system with a substantially high number 

of cores and powerful capabilities for multithreading.  

 

Figure 3.6: GPU Architecture of NVIDIA 

We will add a few more words regarding the various memory modules of an NVIDIA’s 

architecture GPU. Every processor within each multiprocessor has a private local memory in 

the form of registers. Every multiprocessor has its own shared memory which is on-chip, is 

being shared by all threads which are being executed at some point on the multiprocessor 

and is also considered to be a high-speed cache memory. There also exists a global memory 
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that belongs to the entire device and is being shared by all running threads with no 

exceptions. This memory is in principle larger in size but with a slower access. Finally there 

also exist a constant memory and a texture memory, which are both located within the 

device, all threads have access to them and are again considered to be cached. Figure 3.6 

shows the entire organization of NVIDIA’s architecture GPU, where we can see the 

multiprocessors as well as the various memory modules. 

Fast computation of convolution and LCCs requires the fast execution of operations on 

arrays (images) possibly of fairly large sizes. These operations, as it has been discussed in the 

algorithms’ chapter, demonstrate high data parallelism up to pixel level. Based on what we 

have said, GPU offers the possibility to vastly parallelize these operations in order to 

maximize performance and therefore is the ideal hardware architecture to deal with the 

problems we are concerned with. 

3.2.2 CUDA 

CUDA (Compute Unified Device Architecture) is a general-purpose parallel 

programming architecture, product of NVIDIA, that makes use of the parallelism capabilities 

of the GPUs of the same company. CUDA provides a new parallel programming model for 

GPUs, accompanied by a new set of instructions, and attempts to solve complex 

computational problems with a much more efficient way compared to a single or multiple 

CPUs. 

A CUDA’s basic element is that it offers its user the possibility to create, with the usage 

of a new syntax, functions in C language, the so called kernels. A kernel, when called in a C 

program, is executed   times by   different CUDA threads (once for each thread) contrarily 

to the classic C functions that run just once when called by a control thread.  

In the following, we will discuss four fundamental characteristics of the CUDA 

programming model, namely thread hierarchy, thread synchronization, memory hierarchy 

and heterogeneous programming. 

Each CUDA thread has its own unique thread ID to which it has access through a built-in 

variable. This variable has the form of a three-dimensional vector which allows a set of 

threads to be logically arranged as a one-dimensional, two-dimensional or three-

dimensional block of threads. The dimensionality of the block and the length of each 

dimension are defined by the user during each kernel’s call. For instance, a thread that 

belongs to a three-dimensional block of, say, dimensions            may retrieve its 

coordinates (indices)         by the built-in variable and thus calculate its identity, which 

would here be               . This method facilitates the execution of operations on 

data which are in turn arranged as a vector, an array or a field. Threads within a block have 

the ability to be synchronized by an intrinsic lightweight instruction. 
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Due to reasons that concern the GPU’s inner structure, there exist limitations regarding 

the maximum number of threads within a block. For this reason, if it is desirable that a 

kernel run in more threads than this number, threads can be organized in several blocks 

which in turn are arranged in a one-dimensional, two-dimensional or three-dimensional grid, 

in a way that is again determined by the user during each call. When a C program, as we 

described above, calls a kernel to be executed in a grid of threads, each block within this grid 

is indexed and assigned to an available multiprocessor (remember that GPUs are 

implemented as arrays of multiprocessors). Each block’s threads are executed 

simultaneously and when a certain block fully terminates a new one takes its place. These 

multiple blocks, if possible, are executed in parallel, but they may also be executed 

sequentially (depending on whether there exists an available multiprocessor in the GPU and 

the size of the blocks). All the above leads to the selection of the thread number according 

to the number of multiprocessors existent in the GPU, contrary to the usually followed 

practice in classic multithreaded programming.  

Threads have access to the various memory modules within a GPU according to a well-

defined hierarchy. To begin with, each thread has its own private local memory which 

corresponds to the local memory of the processor it runs on. Secondly, threads within the 

same block all share the common shared memory of their multiprocessor. The above two 

memory types maintain their values and hence their meaning for as long as the kernel is 

being executed, that is for the lifespan of the block. Furthermore, there is the global 

memory which may be accessed by all threads at any time. Access to global memory though 

is the slowest amongst the various memory modules. Finally, constant memory and texture 

memory may also be accessed by all threads. Access to them is faster compared to global 

memory but their size is smaller in principle. Values stored in global, constant and texture 

memories also remain after the kernel has terminated. Figure 3.7 shows a representative 

example of thread hierarchy in CUDA, as well as the corresponding memory hierarchy. 

According to CUDA programming model, each kernel runs on the GPU and not the CPU. 

That means that, from the time a kernel is called, the flow of the C program continues 

normally without the CPU waiting for the kernel to terminate its execution. The C program 

may later call a special CUDA function which suspends its execution until the GPU is done 

with its work, hence synchronizing GPU with CPU. Note also that the host system (that is the 

CPU on which the program runs on) and the GPU device have each a distinct physical 

memory space. The CPU’s memory corresponds to the system’s RAM while the GPU’s 

memory corresponds to its global memory, with these two distinct memories being 

connected via a PCI bus. The programmer is responsible for the proper transfer of data from 

RAM to the GPU’s global memory and vice versa. CUDA offers a set of special-purpose 

functions that enable the above data transfer. 

In conclusion, it is noteworthy that CUDA has been designed to support a variety of 

programming languages. One of its great advantages is the relative ease with which it can be 

learned by people who already have some experience in programming with certain common 

languages, such as C. This compatibility with C and its notable potential for parallelism, 

combined with its rapid development during recent years, are the basic reasons for its usage 

in this thesis. 
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Figure 3.7: Thread and Memory Hierarchy in CUDA 

3.2.3 CUFFT 

Following FFTW’s example, NVIDIA has developed a library within CUDA’s programming 

environment which provides an easy-to-use interface for the efficient execution of parallel 

FFTs on GPUs. The library’s name is CUFFT (CUDA Fast Fourier Transform). CUFFT provides, 

amongst others, the possibility of transforming arrays of any size or dimension, while it 

supports floating point arithmetic of both single and double precision. 

In order to achieve its high performance, the CUFFT library implements a working 

model similar to FFTW’s plan-execute mechanism. To be precise, CUFFT internally 

implements a variety of diverse FFT algorithms in the form of parallel kernels, which a 

planner composes in the optimal way for a certain transform size in order to maximize its 

performance. Next, an executor, according to the information produced by the planner, may 
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execute multiple transformations of the same size, thus exhibiting an obvious performance 

benefit. 

In this thesis, CUFFT library constitutes the “twin” library of FFTW for the FFTs 

execution in a GPU environment, which as it has been mentioned are necessary for the 

implementation of our Fourier domain methods. 
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4 FLCC Library 

We have already described the different algorithms for the computation of convolution 

and correlation coefficients with local normalization and we have calculated theoretically 

the number of required operations for each one of them. Furthermore, we have presented 

the specific parallel architectures that we chose to support the execution of the 

computations. The next natural step in our research is the development of code based on 

the algorithms and the architectures, so as to make an essential and realistic result 

comparison between those. However we will not stop there. The multiformity of the 

algorithms and the effectiveness of the architectures regarding the confrontation of the 

problem lend themselves for a more complete handling of the programs’ implementation. 

We desire this implementation to acquire the form of a realistic, practical schema that is 

able to successfully confront the problem of the computation of convolution and correlation 

coefficients as it occurs in real contexts, creating this way a useful and practical 

computational tool that can be used by anyone. 

To this direction, we proceeded to the development of the FLCC library, a powerful and 

versatile computational tool aimed to the holistic confrontation of the problem of 

convolution and correlation coefficients in practice. The FLCC library is comprised of a 

collection of functions that effectively implement each one of the aforementioned 

algorithms, using the chosen modern parallel computational architectures.  At the same 

time it is provided for use in the form of a complete software package, easy-to-learn and, we 

hope, useful in practice. 

At the time of syntax of this diploma dissertation the FLCC library has reached version 

1.3 (FLCC v1.3), about which we will thoroughly talk in this chapter. We will initially refer to 

the features that the current version provides its users (4.1). Next, we will describe the 

library’s interface, meaning the set of functions that are being defined by it and via which 

the user gains access to its usefulness (4.2). Finally, we will make an extended description of 

its internal operation, i.e. what exactly happens from the moment the user calls any one of 

the functions provided (4.3).  

4.1 Features 

FLCC (Fast Local Correlation Coefficients) is a library for the C (or C++) programming 

language that provides its user a set of instructions for the fast computation of two basic 

operations of the field of digital image processing that are under examination in this diploma 
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dissertation. As we already know, they are the sum of convolution (or correlation, exploiting 

the duality of these two operations) and the correlation coefficients with local normalization 

(or LCC distribution or LCCs) between an image and a filter/template. Their computation, 

especially the case of LCCs, has all along been considered to be of high arithmetic complexity 

and time-consuming, especially in the case of real-time systems and thus their use was being 

rendered problematic. 

The aim of this library is to surpass this problem and provide its users a simple yet 

powerful interface for the execution of the aforementioned computations. In the case of 

LCCs a lot of implementations until now have tried to reduce the computation time by 

sacrificing the local normalization feature or by computing approximations of the result in 

some lossy ways that introduce inherent inaccuracies. This library on the contrary manages 

to reduce the computation time to the least possible, without making any compromises 

regarding the quality of the result. The user may be assured that the result at the output is 

precisely the “real” distribution (table) of LCCs, exactly as it is formally defined (see 

subsection 1.4.2 for the precise definition of LCCs). 

The efficiency gain of FLCC is achieved in two ways. On the one hand, the library 

implements and incorporates a set of considerably optimized fast algorithms for the 

computation of convolutions and LCCs. These algorithms are precisely those that have been 

presented and analyzed within chapter 2. On the other hand, it fully exploits modern parallel 

hardware architectures with lots of capabilities and even already established libraries as has 

been described in chapter 3. Specifically, the libraries that are employed by FLCC for the 

execution of the computations are, as we have already seen, multi-core processors and 

graphics processing units (GPUs), the two of them comprising examples of high performance 

architectures for parallel processing. Therefore, the library maximally exploits the 

computational resources of the system it runs on, as it executes the computations 

concurrently on a number of threads on the central processing unit (CPU) and/or it transfers 

the computational load so as to have it executed by the admittedly powerful GPU of the 

system. 

It is a fact that the different algorithms and architectures that are exploited within the 

FLCC library express different efficiency for each case of computation. In order to combine 

them among themselves towards an optimal result, the library applies a clever and flexible 

plan-execute mechanism. Via this mechanism, FLCC automatically chooses for each case of 

computation the optimal way of execution, i.e. the individual algorithm and architecture to 

be used, according naturally to the sizes of the images and the capabilities of the computer 

system. This way the optimal efficiency of FLCC is always guaranteed, without the need for 

any additional knowledge or action by the user, simultaneously guaranteeing the portability 

of this efficiency among different computer systems. 

At the time of syntax of this diploma dissertation the FLCC library is at version 1.3 (FLCC 

v1.3). This version, albeit being fully operational and correct, still is in a stage of infancy and 

will have several more features added to it in the future (see chapter 7). What follows next is 

a concise enumeration of the features the FLCC version 1.3 library provides its prospective 

users: 
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 Fast computation of convolutions for 2D and 3D images and filters of any size 

 Fast computation of distributions of correlation coefficients with local 

normalization (LCCs) for 2D and 3D images and templates of any size 

 Single precision arithmetic 

 Accelerated computation of LCCs and convolutions between a stream of images and 

the same template/filter 

 Potential for execution of parallel computations either on a multi-core CPU or a 

(presently one) GPU 

Finally, we would like to report that FLCC version 1.3 is supported for use on UNIX/Linux 

and MS Windows (via Cygwin) operating systems. At the time of syntax of this text it is freely 

available to install and use from the webpage http://flcc.cs.duke.edu/, distributed under the 

FreeBSD license, complete with full documentation. 

4.2 Interface Description 

Until now we have talked of the different algorithms and the different architectures 

that we employ in the FLCC library so as to compute convolution (or correlation) and 

correlation coefficients as efficiently as possible. In this section we will analyze the interface 

that the FLCC library provides its user. 

We remind the reader the basic conclusion that was produced in chapter 2, i.e. the fact 

that one of the two types of methods (direct and Fourier domain) is more suitable than the 

other for any specific problem is dependent on the sizes of the images and mainly on that of 

the template. At the same time, it is a fact that each individual computer system has 

different features and that the comparative performance among each individual multi-core 

processor and GPU varies. We therefore are aware of the fact that the choice of a most 

suitable algorithm-architecture combination for the execution of any individual computation 

is not preordained but must be made in any case during run-time. 

A basic design element of FLCC is that externally no piece of information appears 

regarding the means by which the computations are executed. In fact, this is the central 

concept of the library, to not relate the user to any practical issues regarding the 

computation of convolution/correlation or LCCs so that they be able, using a simple and 

concise API, of getting the results they desire the fastest and easiest way possible. In order 

for the user to remain disconnected from the type of algorithm that is executed and the 

architecture that is used in any case and for the simultaneous guarantee for a most efficient 

computation, the FLCC library applies on the interface level a plan-execute mechanism, 

similar to the one used by the libraries FFTW and CUFFT. This mechanism constitutes the 

“spine” of the library, as it manages to incorporate in a unified scheme all the different 

algorithms and architectures we have described until now. 

http://flcc.cs.duke.edu/
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The operational logic of the plan-execute mechanism is the following: initially the user 

calls a planner type function to which the desired type of computation is declared (number 

of dimensions, size of each dimension, computation for an image or a stream). The planner 

processes these data and searches for the most efficient algorithm-architecture combination 

that executes the desired computation. It therefore creates an object called plan that 

contains all the information for the optimal combination. Next, the user may call an executor 

type function that based on the specific plan executes the computation for specific images. 

The advantage of this approach is that the plan may be reused for an unrestricted amount of 

times for the execution of the same type of computations on the same or different images 

(which obey the specifications that have been given during the creation of the plan). Given 

the fact that in practice the execution of many computations of the same type is a recurring 

occurrence, one realizes that the total process of planning-execution may prove to be 

significantly efficient, as the plan is computed only once and is used for a multitude of 

different computations. This way, the FLCC library manages to efficiently and flexibly 

execute the computations, to combine the advantages of different algorithms and 

architectures and to adapt to the features of different computer systems, while this whole 

process is performed in a totally transparent towards the user way. 

Before we proceed to the thorough description of the interface, we remind the reader 

that as part of the documentation of the FLCC library a detailed user manual is distributed, 

that is updated for every new version. We refer the user to the manual if the their aim is to 

use the functions and the data types of FLCC in their own program, so as to have under their 

disposal with detail all the new possibilities provided by the each time current version of the 

library. The manual is written in a way that the operations and features of the entire 

interface are explained simply and understandably, it describes issues concerning the 

installation and usage of the library and provides code examples. 

Let us proceed then to the description of the interface. The version 1.3 of FLCC provides 

the capability for the computation of convolutions and LCCs using six main functions. Three 

of them have to do with the computation of convolution and three of them for the 

computation of LCCs. There are additionally two more functions for the allocation and 

deallocation of memory. In the subsections that follow we will thoroughly discuss the 

functions that perform the planning process (4.2.1), those that execute the main 

computations (4.2.2), those that deallocate the bound resources (4.2.3) and those that are 

charged with memory management (4.2.4). We will conclude with some information 

concerning the means of installation and usage of the FLCC library (4.2.5). 

4.2.1 Planning Functions 

We will begin the presentation of the individual functions with those that perform the 

planning process. They are the functions conv_plan(…) and lcorr_plan(…), which 

are used for convolution and LCCs respectively. Their aim is to create the optimal plan for a 

type of computation. Their input is common among them and their declarations are the 

following: 
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flccResult  conv_plan(flccPlan *plan, int dim,   

    flccSize imSize, flccSize temSize, 

    flccType type, flccPlatform platform) 

flccResult lcorr_plan(flccPlan *plan, int dim,   

      flccSize imSize, flccSize temSize, 

    flccType type, flccPlatform platform) 

 

As is evident, we have defined new data types for some of the arguments. This is done 

in order to organize the argument input into the functions and to provide the user a 

structured way for setting the parameters for the execution of the functions. The general 

aim of the arguments is to describe the type of computation for which the planning is due. 

Next we explain one by one these arguments and the corresponding data types. 

The object of type flccPlan is a data structure in which the plan is stored by the 

above functions, i.e. the necessary information with which FLCC will execute the 

computations for convolution of LCCs in as efficient as possible a way. The details regarding 

what kind this information is exist in subsection 4.3.5. The variable plan constitutes the 

output of the planner functions. The functions get as input a memory pointer to this 

variable, which must have already been allocated by the user. 

With the integer number dim the user declares the number of dimensions of the 

problem. FLCC supports problems of two or three dimensions and by inputting another 

value the function returns an error. 

The two next arguments are of type flccSize. This type is a data structure that 

contains the information regarding the size of an image. It is defined as follows: 

typedef struct {         

 int h;         

 int w;         

 int d;           

} flccSize; 

 

With the argument imSize the size of the image that is to participate in the 

computation is declared while with the argument temSize the size of the template is 

respectively declared. 

The images are stored in memory in the form of arrays. The user must have in mind that 

the dimension d is the one that changes more often in their array, next is w and finally is h. 

The arrays are assumed to be arranged in row-major order (known also as C-order). In case 

the user has declared only two dimensions for their problem, the value d is ignored by FLCC 

and therefore the information must be contained in h and w. So, in the case of two 

dimensions, the size of each individual array equals to    . In the case of three 

dimensions the size equals to      . 
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The data type flccType is an enumeration that is defined as follows: 

typedef enum {         

 FLCC_SINGLE,        

 FLCC_STREAM          

} flccType; 

 

We therefore notice that the argument type can receive as values only the parameters 

FLCC_SINGLE and FLCC_STREAM. If the user intends to execute computations on a 

single image they must enter the value FLCC_SINGLE. If on the other hand they intend to 

execute computations on a stream of images, they must enter FLCC_STREAM. This choice 

exists so that the planning process be able to take into consideration the algorithmic 

benefits that occur from the use of streaming if the computation includes a stream of 

images. Let us note that the execution of the computation would operate correctly, i.e. 

would produce correct results, even if this variable had not received the appropriate value. 

In that case though, it would not be guaranteed that the computations were performed in 

the fastest possible way. 

The data type flccPlatform is also an enumeration, which in turn is defined as 

follows: 

typedef enum {         

 FLCC_HOST,        

 FLCC_DEVICE,        

 FLCC_ANY           

} flccPlatform; 

 

It is evident therefore that the variable platform can receive three different values, 

those being FLCC_HOST, FLCC_DEVICE and FLCC_ANY. Depending on this value, the 

functions will respectively take into account during the planning stage only methods that are 

executed on a CPU, only methods that are executed on a GPU or finally all the available 

methods. So, the value FLCC_HOST forces the planner to choose the CPU, the value 

FLCC_DEVICE the GPU while the value FLCC_ANY lets the library free to choose the 

optimal architecture. This is the only way the user may intervene on the choice of 

architecture. We have chosen to add this capability to cover the case in which the user is 

either interested in the execution on one particular platform or certain that one of the two 

platforms is faster and thus does not wish for the planner functions to spend time in 

examining the methods of the other architecture. Then again if none of the above reasons is 

the case, we recommend the value FLCC_ANY, so that the full available potential of FLCC is 

exploited. 

We notice that the above functions also have an output of type flccResult. This 

type is an enumeration of values that correspond to error messages of the FLCC library. The 

functions return the value FLCC_SUCCESS in the case of a successful execution or any 
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other that signifies the occurrence of an error and its type. So, with a simple examination of 

the return value, the user can check whether the functions were executed correctly and if 

not they may immediately find out what exactly went wrong. Table 4.1 comprises the 

comprehensive list of the possible values of type flccResult, as well as the significance 

each one of these values has. 

Table 4.1: Possible Error Values of the FLCC Library 

Error Value Significance 

FLCC_SUCCESS The function executed correctly 
FLCC_INVALID_PLAN The plan object is not valid 
FLCC_INVALID_DIMENSION The dimension is not valid 
FLCC_INVALID_SIZE Some image size is not valid 
FLCC_INVALID_TYPE The type object is not valid 
FLCC_INVALID_PLATFORM The platform is not valid 
FLCC_INVALID_VALUE Some pointer or array is not valid 
FLCC_ALLOC_FAILED FLCC failed to allocate memory  
FLCC_EXEC_FAILED FLCC failed due to an internal error 

 

4.2.2 Execution Functions 

Having executed a planner function, we receive at its output an object of type 

flccPlan. This will later be used for the performance of the computations. The two 

functions that execute the computations are conv_exec(…) and lcorr_exec(…), for 

convolution and for LCCs respectively. The templates of these two declarations follow. 

Again, their inputs are the same. 

flccResult  conv_exec(flccPlan plan,     

    float *image, float *templat,  

    float *conv, int imCount) 

flccResult lcorr_exec(flccPlan plan,     

    float *image, float *templat,  

    float *lcc,  int imCount) 

 

The first argument is the plan object that has been created by the call of one of the 

respective planner functions. It is the user’s responsibility to call conv_exec(…) with a 

plan that was produced by conv_plan(…) and similarly to call lcorr_exec(…) with a 

plan that was produced by lcorr_plan(…).  

The three following arguments are pointers to float and point to the memory 

locations in which the images that participate in the computation are stored. These are in 

order the image (single or stream), the template/filter and the result (single or stream). We 
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should note that FLCC assumes that the images with which it works are stored in memory as 

real-valued element arrays and, since presently it only supports single precision arithmetic, 

those elements are of type float. Each one element of an array corresponds to the value 

of a pixel of the respective image. The arrays image and templat comprise the input of 

the functions and are read by them without being modified. The array conv/lcc on the 

other hand is the output and in the end of the execution it will have been filled with the 

values of the result of the convolution/LCCs between image and templat. It is the user’s 

responsibility to have appropriately allocated memory for the storage of these arrays (see 

subsection 4.2.4). 

The library assumes that all the arrays are stored in row-major order (otherwise known 

as C-order). The order of the dimensions is h, w, d with d being the one that changes the 

fastest and h being the one that changes the slowest (the variables h, w, d refer to the data 

type flccSize, see subsection 4.2.1).  

When the computation refers to a stream of images and not just a single image, the 

FLCC library assumes that these images are stored in RAM in successive memory locations 

and are all of the same size. So, the variable image is considered to point at the first 

element of the first image of the stream while the other images follow successively. In a 

similar form will occur the results, i.e. FLCC will store them in successive memory locations, 

starting from the location at which the variable conv/lcc points. 

The integer number imCount informs the functions regarding the number of images 

to be processed, i.e. the number of images of the stream. If although during the call of the 

planner function the user had chosen as a parameter the value FLCC_SINGLE then the 

value imCount is ignored and it is assumed that there is only one image to be processed. In 

this case the variable imCount may receive any value but we nevertheless recommend the 

value   for reasons of consistency. 

We will stand a little more on the issue of the sizes of the arrays, so that it becomes 

completely clear. The array templat is in any case of the size of the template/filter that 

has been declared during the call of the respective planner function. For the other two 

arrays there is a differentiation that is as follows: in the case of a single computation (i.e. if 

the plan has been created with the parameter choice FLCC_SINGLE) the size of the array 

image is simply equal to the size of the image as it has been declared during planning and 

the array conv/lcc will be of convolution/LCCs size, as it results from the sizes of both 

image and template. We have thoroughly explained how the convolution/size results in 

chapter 1. In the case of a computation of a stream of images (i.e. if the plan has been 

created with the parameter choice FLCC_STREAM) the size of the array image will be 

equal to the size of the image as it has been declared during planning multiplied with the 

number imCount. Similar to conv/lcc, its size will be the convolution/LCCs size 

multiplied with the number imCount. This stems from the fact that for a stream of   

images, there will also be   output tables. Beware when choosing the value imCount as 

for a smaller value than the correct one, fewer computations will be performed than desired 

by the user while for a larger one garbage will be processed. 



 FLCC Library 

73 

The value returned by the functions is of type flccResult and its aim is to inform 

the user concerning the success or not of their execution and the type of error that may 

have occurred. Table 4.1 comprises the comprehensive list of the possible values of type 

flccResult, as well as the significance each one of these values has. 

The executor functions may be called multiple times for the same or different images 

using the same plan. A single prerequisite exists that each individual image be compatible to 

the dimension, size and the parameter flccType that have been used during the planning 

process for that plan.  

4.2.3 Deallocation Functions 

From the moment a plan is not further useful it should be destroyed, i.e. the memory 

that stores all the information retained by it should be deallocated. Towards this, two 

functions have been developed, the templates of which are the following: 

flccResult  conv_destroy(flccPlan *plan) 

flccResult lcorr_destroy(flccPlan *plan) 

 

In both cases, the sole input argument is a pointer to the object of type flccPlan 

that we want to deallocate. The conv_destroy(…) function is intended for the 

destruction of the plans that have been created by conv_plan(…) whereas 

lcorr_destroy(…) is intended for those that have been created by lcorr_plan(…). 

Following its destruction a plan is not reusable. 

These functions return a value of type flccResult that informs the user regarding 

their successful or not execution. Table 4.1 contains the full list of possible values of this 

type and their explanations. 

4.2.4 Memory Management Functions 

All the arrays required as input arguments by the executor functions must have already 

been allocated on RAM by the user. In order to have the FLCC library successfully operate 

and fully exploit its potential, the memory allocated must obey to some restrictions. To 

accommodate the user in the resolution of this process without requiring of him knowledge 

of further internal details, FLCC provides a function for the allocation of memory that 

operates as the known malloc(…) and guarantees that the memory is allocated 

appropriately. Therefore, all the arrays to be used by FLCC must always be allocated by the 

following function:  
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void *flcc_malloc(size_t bytes) 

The argument bytes signifies the number of bytes that are required to be allocated. 

The function returns a pointer to the first location of the allocated memory. This pointer is of 

type void and must be cast to the desired type (here float). If the allocation fails the 

pointer is set to zero. 

Naturally there also exists the corresponding function for the deallocation of memory. 

This must be used instead of free(…). 

void flcc_free(void *array) 

 

The argument array points to the memory that needs to be deallocated. This function 

does not return any value. 

4.2.5 Installation and Usage of the Library 

The FLCC library is free open source software. Its official webpage is 

http://flcc.cs.duke.edu/. On this webpage one can at any time find its freely available, most 

recent version. The library is distributed under the form of a complete software package, 

protected by the FreeBSD license, complete with full documentation and thorough 

instructions for the installation process. Presently it can be installed on UNIX/Linux or MS 

Windows (via Cygwin) environments. Following its installation, FLCC can be used in programs 

of the user’s making by linking it to them during their compilation. 

In order for the FLCC library to operate in its full form and potential,  all the individual 

tools it uses must have already been installed on the system, namely pthreads, FFTW, CUDA 

and CUFFT. In case the user does not have either CUDA or CUFFT installed on their system, 

or does not own a GPU or simply does not wish to use one, the FLCC library provides the 

possibility for an installation without the use of a GPU. This way, all the methods that 

transfer the computational load to the GPU are excluded and FLCC restricts its computations 

to the system’s CPU(s). The same applies to the case where the user does not have installed 

and does not wish to install the FFTW library. FLCC provides the possibility for an installation 

without the use of FFTW, excluding all the methods that are based on it (Fourier domain 

methods on the CPU). The two possibilities for partial installation may even be combined. In 

any case though, for the full exploitation of its potential, we recommend to the prospective 

user to have the FLCC library installed in its fullest version. 

http://flcc.cs.duke.edu/
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4.3 Internal Operation 

A basic feature of the FLCC library is that while the interface provided is especially 

concise and simple, its structure and internal workings present proportionately greater 

complexity. Issues like the implementation of the various techniques and methods that we 

have discussed in previous chapters and the exploitation of the potential of the various 

architectures we have described are resolved transparently concerning the user, who is not 

required to know anything about them. Next in this section we proceed to the description of 

those worthy of analysis matters. 

In subsection 4.3.1 we will talk of how the library is logically structured and of the type 

of functions that comprise it. Next, in the following two subsections (4.3.2 and 4.3.3) we will 

describe the exact means of the implementation of the direct method and the Fourier 

domain method respectively, on each one of the two architectures we used. We will 

therefore talk about how every stage of each algorithm is implemented, how the parallelism 

is achieved, what is computed by each thread, what each architecture offers, programming 

“tricks” like loop unrolling and the potential provided by ready-made software packages. In 

subsection 4.3.4 we will see the techniques with which the performance of the 

computations is improved in the case of a stream of images, as much algorithmically 

(explained in chapter 2), as by exploiting the asynchronous execution potentials provided by 

GPUs. Finally, in subsection 4.3.5 we will explain everything that happens concerning the 

plan-execute model, specifically for the FLCC library. We will describe everything that is not 

visible to its user, like what exactly happens by calling the interface functions, what 

information is contained in the plan structure, how the latter is used in the execution stage, 

various safety nets and more. 

Let it be noted that for most of the issues we will next talk there are no noteworthy 

differences between the computation of two-dimensional and three-dimensional images. 

Thus, we will talk once per each issue, assuming that the extension of the concept for 

another number of dimensions is obvious. 

4.3.1 General Structure of the Library 

In Figure 4.1 the complete internal structure of the FLCC library is depicted in a 

schematic form. We notice that FLCC is structured as a three level logic, with each one of the 

levels using the services of the adjacently lower. 
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Figure 4.1: Schema of FLCC Library’s Structure 

The upper level is comprised of the functions that constitute the interface of the library 

and it is the only level accessible to the user. It implements the plan-execute mechanism by 

managing properly the functions of the lower levels. The interface level’s functions have 

thoroughly been described in section 4.2. 

The in-between level of the library includes all the functions that implement the 

individual algorithms that FLCC uses. This level’s functions are managed by the interface 

level, which as we stated calls them in a proper way to execute the processes of planning 

and execution. Table 4.2 lists the main functions that comprise this level and explains all 

about their operation. 

Finally, the lower level is comprised of all those elementary functions that are used by 

the in-between level of algorithms for the execution of low level computations. These are 

thread functions, CUDA kernels, the FFTW and CUFFT ready-made functions and some 

helper functions for a variety of uses. This level is responsible for the execution of all the 

basic computations of the library and for this reason it is comprised of low level, highly 

optimized functions. 

In the subsections that follow we will proceed to a further explanation and analysis of 

the implementation of the individual functions that have been presented in this subsection. 
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Table 4.2: FLCC Library’s In-between Level’s Functions 

Function Operation 
conv2_host(…) Two-dimensional convolution using the 

direct method on a CPU 
conv2_dev(…) Two-dimensional convolution using the 

direct method on a GPU 
conv3_host(…) Three-dimensional convolution using the 

direct method on a CPU 
conv3_dev(…) Three-dimensional convolution using the 

direct method on a GPU 
fconv2_host(…) Two-dimensional convolution using the 

Fourier domain method on a CPU 
fconv2_dev(…) Two-dimensional convolution using the 

Fourier domain method on a GPU 
fconv3_host(…) Three-dimensional convolution using the 

Fourier domain method on a CPU 
fconv3_dev(…) Three-dimensional convolution using the 

Fourier domain method on a GPU 
lcorr2_host(…) Two-dimensional LCCs using the direct 

method on a CPU 
lcorr2_dev(…) Two-dimensional LCCs using the direct 

method on a GPU 
lcorr3_host(…) Three-dimensional LCCs using the direct 

method on a CPU 
lcorr3_dev(…) Three-dimensional LCCs using the direct 

method on a GPU 
flcorr2_host(…) Two-dimensional LCCs using the Fourier 

domain method on a CPU 
flcorr2_dev(…) Two-dimensional LCCs using the Fourier 

domain method on a GPU 
flcorr3_host(…) Three-dimensional LCCs using the Fourier 

domain method on a CPU 
flcorr3_dev(…) Three-dimensional LCCs using the Fourier 

domain method on a GPU 

 

4.3.2 Direct Method Implementation 

We have already discussed in chapter 2 about the direct algorithms with which 

convolution and correlation coefficients with local normalization are computed. These two 

operations are different however the direct methods for their computation are rather 

similar in that the template/filter passes over the image and a series of operations is being 

performed between certain elements of the image and the template itself in order to 

compute each individual output element. For given dimensions and for each relative 

position between image and template, the positions of the required elements of the image 

are the same for the two methods and only the series of operations differs. This is the 
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reason we will examine the implementation of the two direct methods alongside, as the 

means by which their parallelization is carried out is very similar. 

The main concept here is that we deal with two direct algorithms that are highly 

parallelizable. Every output element can be computed independently of the rest just by 

knowing the template and a part of the image. This provides the possibility to have every 

element be computed by a separate thread. Next we will talk about exactly how we exploit 

this property in the case the computations are performed on a CPU (as a rule a multi-core 

processor) but also in the case the computations are transferred for execution on a GPU. 

4.3.2.1 Implementation on a CPU 

We will begin with the case of one or more CPU cores. The inherent parallelism of the 

computations that we have described is implemented with the use of threads. As we have 

stated before, FLCC itself uses the pthreads library in order to create portable threads. As we 

said in subsection 3.1.2, the function pthread_create(…) is used to create new control 

threads among which the computational load is to be shared. 

Let us discuss now about how the new set of threads is used in the execution of the 

direct methods. The number of threads the FLCC library creates is declared by the user 

during its installation and will henceforth be denoted by  . As a rule, the library operates 

more efficiently when this number is equal to the number of cores on the processor chip 

(see subsection 5.2.3). Of course the user may select the number   in case he does not own 

a multi-core processor and thus one thread will perform all the computations. 

As a rule there will be many more elements in the output table than there are cores. 

This means that each thread will be responsible for the computation of many more than one 

output elements. Each thread will have access to the following data: the whole image that 

has already been padded with zeros on each side (something that is also performed with the 

use of threads), the template, the table of convolution/LCCs (output table) in which the 

results of the computations will be stored and finally information relevant to the section of 

the output table that is under the thread’s responsibility. Regardless of whether the image is 

of two or three dimensions, the memory that has been allocated for the output table is one-

dimensional (linear). Let    be the total number of elements of the output table. Each 

thread is responsible for the computation of a continuous linear section of this table with a 

size of about 
  

 
 elements. We say about because usually there is a remainder   in this 

division. This means that an additional element corresponds to the first   threads that are 

created, such that the division be as balanced as possible. The number of elements that 

correspond to each thread is called the offset of the thread. Beyond the number of 

elements, in order to assign correctly a section to a thread, each thread requires the 

knowledge of what the first element of the section is. This is easily calculated from the sum 

of all the offsets of the previous threads. It is clear that the first thread starts from the first 

element of the table. In Figure 4.2 an example of the apportionment of a two-dimensional 

output table of size       among    threads is depicted. 
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Figure 4.2: Example of the Apportionment of a 2D Output Table among threads on a CPU 

As each thread begins the execution of its given thread function, it enters a loop that 

performs a number of iterations equal to the thread’s offset, with each one computing one 

output element. So, in each iteration the proper computation between image and 

template/filter is performed, i.e. inner product in the case of convolution and the steps 3 

and 4 of the direct method in the case of correlation coefficients (more in chapter 2). So in 

the end of the iterations each thread would have computed the entire section that 

corresponds to it. 

It is evident from the algorithms of the direct methods that for the computation of each 

output element an iteration loop structure is required that passes the whole template and 

the image’s panel that corresponds to a given relative positioning. The number of iterations 

of this loop will be equal to the size of the template. However it is a fact that in practice the 

overwhelming majority of the templates that require the direct method have equal 

dimension sizes (squares or cubes) and a rather small size (let us not forget that for large 

template sizes the Fourier domain method is more suitable). This provides a rather notable 

possibility for optimization of the functions being executed by the threads that lies in the 

concept of loop unrolling. Indeed, the FLCC library implements a general thread function for 

the computation of convolution/LCCs with a regular use of the iteration loop but it does not 

stop there. It retains optimized versions of this function that refer to specific template sizes 

(from     to       for the two-dimensional case and from       to          

for the three dimensional). Since the size of the template is known for each one of these 

individual functions, the use of an iteration loop becomes unnecessary as the number of its 

iterations is consequently known. Therefore, these functions fully unroll the iteration loop, 

achieving notably high time performances. 

The means by which FLCC performs the full unrolling of the loops in the thread 

functions is a clever use of macro-instructions. Using the pre-processor instruction 

#define, a macro-instruction is defined that implements the thread function and receives 

as arguments the dimensions of the template. During the installation of the FLCC library 
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several calls of this macro-instruction that correspond to the specific template sizes we 

stated before are given for compilation. In the definition of the macro-instruction there is, of 

course, the iteration structure normally, so as of now its avoidance is not evident. What has 

happened though is that the number of the iterations has been set to constant values. So, 

during FLCC’s installation, the compiler knows the precise number of iterations of the loop 

and thus unrolls it fully. 

During the execution, right before the threads are created, a check is performed to see 

whether the template is square or cubic and also if its size corresponds to one of the 

optimized thread functions. If not, the general, unoptimized function is set to perform the 

computation. So, the optimized execution is achieved for the overwhelming majority of the 

common cases while simultaneously the correct performance of the computation is 

guaranteed even in the uncommon cases. 

4.3.2.2 Implementation on a GPU 

Let us proceed to the case of execution with the use of a GPU. Based on what we have 

already discussed regarding GPUs and CUDA, in this case it is possible to have as many CUDA 

threads be created as the number of elements of the output table, with each thread 

executing the kernel that implements the direct method for only one output element. 

We will briefly talk now about the execution of kernels and the organization of threads 

into a grid of blocks. The blocks may have a maximum number of threads, which on current 

GPUs is of the scale of     . We used square blocks in the case of a two-dimensional image 

and cubic blocks in the case of three-dimensional images. The blocks’ sizes are constant and 

are set by us. The size of the two-dimensional blocks is       and of the three-

dimensional blocks is      . In the case of two-dimensional images, the first thread 

block is responsible for the output elements that are in a manner of speaking on the upper 

left corner of the output table (if we assume that is the origin of the axes for each 

dimension). The rest of the blocks are arranged to the right in order and similarly 

downwards, so as to form an apportionment of the output table in a rectangular way. In a 

similar way the blocks are also arranged in the case of three-dimensional images. In Figure 

4.3 an example of the apportionment of a two-dimensional output table of size       in 

CUDA blocks and threads is depicted. 

For a random table size it is evident that most of the times the blocks that are at the 

end of a dimension would be responsible for less output elements than their number of 

threads. Thus, in the kernel there should normally be a control structure if to verify 

whether each thread is within the bounds of the table, so as to prevent it from writing on 

memory locations that are out of bounds. In FLCC though, for performance reasons we 

desired to avoid this control structure and so we tried something different. We allocate on 

the global memory more space than is needed for the image and the output table, such that 

the size of each dimension of the output table is larger or equal to the convolution’s size of 

the dimension and also perfectly divisible with the respective block dimension size. Thus we 



 FLCC Library 

81 

completely avoid the control structure inside the kernels. This means, of course, that some 

threads belonging to the extreme blocks will perform some computations that do not have a 

logical counterpart. This however is not a problem as these elements are removed from the 

final result and thus do not have any impact on it. Let us note that this process of expanding 

the tables is incorporated in the padding process of the image that takes place one way or 

the other before the execution of the main computation and therefore does not negatively 

affect the final time performance. 

 

Figure 4.3: Example of the Apportionment of a 2D Output Table among Threads on a GPU 

The means by which CUDA perceives the arrangement of blocks is called a grid. For a 

two-dimensional image the grid is also two-dimensional and its size is the following: 

   
  

 
  
  

 (4.1) 

where    is the size of dimension   of the output table   (which we allocate in the way we 

described before) and    is the size of dimension   of the block. This way the grid exactly 

corresponds to the apportionment of the output table in blocks we have described. 

Something similar could also take place in the case of a three-dimensional image, meaning 

that we could form the three-dimensional grid like: 

   
  

 
  
  
 
  
  

 (4.2) 

which perfectly relates to the way the table is divided among blocks. It is a fact though that 

some GPUs do not support a three-dimensional grid, just two-dimensional, so for portability 

reasons we choose to do something different. We arrange thus all the three-dimensional 

blocks into a two-dimensional grid of size equal to: 

 
 
  
  

 
  
  
  

  
  

 (4.3) 
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In other words, the dimensions   and   of this “virtual” three-dimensional grid (as we 

assume the output table is divided into blocks) are depicted along the first dimension of the 

“real” two-dimensional grid (as CUDA perceives it) while the dimension   is depicted along 

the second one. The depiction is performed in a way such that, if       is the position of a 

block in the real two-dimensional grid, its position         in the virtual three-dimensional 

grid would result like so: 

 
         

  
  
  (4.4) 

 
     

  
  
    (4.5) 

     (4.6) 

Using the above coordinate transform, each thread will be able to determine the block in 

which exists the output element that it corresponds to. Next, receiving the coordinates of 

itself inside the block, the thread can easily determine the general position of the element 

on the output table. The above process is clearly depicted in Figure 4.4, where a 

characteristic example of the formation of a two-dimensional grid from three-dimensional 

blocks is presented. 

 

Figure 4.4: Example of the Transform of a 3D Virtual Grid to a 2D Real Grid 
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With what we have defined until now we have developed the naive kernel according to 

which all the tables that the threads require access to exist on the GPU’s global memory. 

However there is a multitude of possibilities for further optimization, which we analyze in 

the following paragraphs. 

Each thread block, as we have said before, is executed by a separate multi-processor of 

the GPU. Each multi-processor has its own shared memory that is considered to be cached 

and presents a significantly smaller access time in comparison to the global memory. The 

notable feature of this shared memory is that, in contrast to the cached memory of a CPU, it 

is completely managed by the programmer. This means that the correct exploitation of its 

potential is a critical factor in the achievement of high efficiency. The basic concept behind 

its use is the transfer to it of those data that are used again and again by multiple threads in 

the block. In our case, these data are on the one hand the template and on the other hand 

the section of the image that is required for the computation of the output elements that 

correspond to the whole block. Each dimension of this section is equal to the respective 

dimension of the block plus the respective dimension of the template minus one. In Figure 

4.5 the means by which FLCC manages the shared memory in the case of a two-dimensional 

computation is depicted. 

 

Figure 4.5: Schematic Representation of the Use of Shared Memory for a 2D Image 

The transfer to the shared memory is implemented like so: before the execution of the 

main computations, each thread inside a block transfers concurrently with the others one 

element from the template and one element from the image to the shared memory. This is 

repeated as many times as it is needed (typically a few) until the transfer of all the necessary 

elements is complete. Once all the elements are on the shared memory, they will be visible 

to all the threads inside a block and thus the main computation will be in a position to 

commence. The key to the success of this strategy is that the transfer is performed once and 

lasts little, as it is being performed concurrently by all the threads. Still, the elements that 

result into the shared memory are used lots of times from more than one thread each, with 

a minimal access time every time. 
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Relative to the implementation of the direct method on a CPU, FLCC creates highly 

optimized kernels for specific cases of template sizes. The optimization also lies in this case 

on the full unrolling of the iteration loop that passes over the template and the section of 

the image for the computation of one output element. The kernels that are optimized this 

way correspond to template sizes from     to       for two dimensions and from 

      to       for three. This time though a completely different technique is used 

than the one in the CPU case, specifically, code generation. Specifically, we developed using 

MATLAB a code generator that generates the code of a kernel for a given template size. Next 

we used this generator to generate the kernels that correspond to the sizes we stated 

before. In these kernels there is usage of shared memory and of full unrolling of loops. The 

code of these kernels is included in the library and is compiled during its installation. 

Therefore, during the execution, before the kernel is called using CUDA’s special syntax, a 

check is made to see whether the template corresponds to any optimized kernel. If so, that 

kernel is called. If not, the naïve kernel is called so that the correct computation of the result 

is guaranteed in any case. 

 We will conclude this subsection by making a comparison between these two methods 

for optimizing code using loop unrolling that we used in FLCC. We remind the reader that 

these methods are on the one hand the use of macro-instructions and on the other hand the 

explicit code generation by a generator. It is clear that the code generation method 

definitely leads to a maximum efficiency, as the code it generates can be fully optimized. 

This method though has one significant disadvantage: it drastically increases the size of the 

source code and thus the compilation time during FLCC’s installation. The macro-instruction 

method on the other hand does not have the disadvantages of the use of generators but it 

does not exhaust the potential for code optimization. During FLCC’s development the 

achievement of a maximum efficiency existed always as a design goal, thus we did not 

hesitate in using the code generation method for GPUs. In the case of CPUs though, it 

happens that the macro-instruction method produces equivalently good results as the code 

generation method, because of the high optimization that is achieved by the compiler. We 

therefore chose to use this method so as to restrain the size of the source code to lower 

levels as well as the compilation-installation time. 

4.3.3 Fourier Domain Method Implementation 

Having finished with the implementation of the direct method, in this subsection we 

will discuss the means of implementing the Fourier domain method. We have described in 

chapter 2 the relevant algorithms for the computation of convolution and LCCs and we have 

seen that they present a degree of similarity. This similarity lies on the fact that in the case 

of LCCs essentially a computation of three convolutions is performed in the Fourier domain, 

which in turn combined appropriately result in the LCC distribution. So, the description of 

the implementation of the Fourier domain methods will concentrate on the stage of 

convolution and the transforms that take place during which. 
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We remind the reader that we compute convolution based on the 

convolution/correlation theorem (section 1.6), i.e. on the transform of the image and the 

template into the Fourier domain, their point-by-point multiplication and the inverse 

transform of the resulting complex signal back to the spatial domain so as to receive the 

result of the convolution. Additionally, we said that since we have to occupy ourselves 

exclusively with image processing, the value that any element in the spatial domain has is 

real. This means that by properly using FFT the Fourier transform of a real-valued signal can 

be executed in          operations (i.e. half than the regular case) where   the size of 

convolution, something that we will call a “half FFT”. The reason for this reduction in time is 

that nearly half the elements of the complex signal in the Fourier domain are needed for the 

retrieval of the initial signal with an inverse transform. Specifically, in our case    
  

 
    

elements are needed for two dimensions and      
  

 
    elements for three, where    is 

the   dimension of the convolution table  . This number for any number of dimensions is 

called the Hermitian size. 

Since the above are common concerning computations as much of two as of three 

dimensions, the only noteworthy differentiation lies on their implementation on the two 

different architectures we use, i.e. the multi-core processors and the graphics processing 

units. 

4.3.3.1 Implementation on a CPU 

We begin with the case of the execution of the computations on one or more CPU 

cores. For the execution of the FFTs we use the already established FFTW library, which 

provides ready optimized functions for the computation of the half FFTs of two and three 

dimensions that we need. It also supports multi-threading, as it internally uses the pthreads 

library and therefore can be executed in parallel, exploiting all the available CPUs of the 

system. On the other hand, for the execution of the point-by-point multiplications, we share 

the computational load among different CPUs using the pthreads library. We will examine all 

of this analytically in the following paragraphs. 

Let us discuss now the way FFTW is used for the execution of the FFTs. The moment the 

FFTs are supposed to be executed there already exist two FFTW plans that have been 

created during FLCC’s planning stage (FFTW’s planning stage is incorporated in the 

respective FLCC stage, see subsection 4.3.5). One of these is responsible for the transform 

from a real-valued signal to a complex-valued one (real-to-complex) and the other one for 

the inverse transform from a complex-valued signal to a real-valued one (complex-to-real). 

Both of these transforms are performed with a half FFT. Each created plan is given as an 

argument to FFTW’s appropriate for the type of the transform execution function (real-to-

complex or complex-to-real) along with two pointers to tables. These tables are the current 

input signal and output signal of the transform, the real-valued signal being represented by 

an array of type float and the complex signal of the frequency domain being represented 

by an array of type fftwf_complex. The type fftwf_complex is defined by FFTW as 
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an array of two float values, which correspond to the real and the imaginary part of a 

complex value. It is noteworthy that the real-valued table is always of convolution size while 

the complex-valued table is of Hermitian size. 

It is a fact that the speed with which an FFT is executed by FFTW is heavily dependent 

on the dimension sizes of the table to be transformed. The overwhelmingly faster cases are 

the ones where the dimension sizes of the input table may be written as products of small 

prime numbers. In order to exploit this feature of FFTW, we expand the tables to be 

transformed to a convolution size that fulfills this requirement (internally in FLCC). In other 

words, if the real convolution size as given is not satisfactory, FLCC seeks to find the next 

larger convolution size that it deems it will lead to a fast transform and expands the tables to 

be transformed to this size by padding with zeros at the end of each dimension. In the two-

dimensional case, the size of each dimension that is chosen is equal to the next power of   

for a dimension size up to     , while for larger ones it is equal to            with   

being the smallest possible. Respectively for three dimensions, the next power of   is chosen 

for a dimension size up to    , while for larger the value          is chosen with   

being the smallest possible. This process is incorporated into the otherwise necessary 

padding process and in the end the extra elements that have been added are removed from 

the final result.  

We will now proceed to an explanation of how the point-by-point multiplication 

between two complex signals is being performed using the pthreads library. More on the 

means that we use pthreads to share the computational load have already been presented 

in the previous subsection (4.3.2) since their use there is more intensive. We will redo a 

small review though for the sake of clarity. This multiplication is performed between two 

signals that are in the Fourier domain and thus are being represented by tables of type 

fftwf_complex. The number of complex elements they comprise of equals to the 

Hermitian size. This means that their number of elements is equal to about half the number 

of elements of the respective signal in the spatial domain, as that many are needed since 

they have been formed by a half FFT from a real-valued signal and that many are needed to 

fully retrieve that initial signal. The table that contains the result of this complex 

multiplication will also be of Hermitian size. Each complex element of position   of this 

element is computed only by knowing the two respective complex elements in position   of 

these two tables to be multiplied. We therefore create using pthreads   threads of which 

each one is responsible for the computation of a continuous section of the output table with 

complex elements numbering 
 

 
,  where   is the Hermitian size. Naturally this division 

always leaves a remainder  . Therefore the first   threads will have access to 
 

 
   

elements. The number of elements that corresponds to any thread is called the offset of the 

thread. Beyond the number of elements, each thread needs to know the first element of the 

section of the output table that corresponds to it. This is easily calculated to be equal to the 

sum of all the offsets of the previous threads. Obviously the first thread starts from the first 

element of the table. 

A detail that we would like to note is that by transforming a signal to the Fourier 

domain and next back to the spatial domain using FFTW’s functions, the resulting signal is 
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not the initial. The initial will result with the division of each element of the new signal with 

the total number of its elements, i.e. the convolution size. This necessary division is 

incorporated by FLCC in the above multiplication so as to have it executed in parallel, since 

because of the linearity of all the computations, it is not important at which stage it is 

performed. 

4.3.3.2 Implementation on a GPU 

We therefore proceed to the case of a GPU. For the computation of FFTs on a GPU we 

use the CUFFT library by NVIDIA and for the point-by-point computation we call a kernel that 

performs it. 

The use of CUFFT for the case of execution on GPUs within FLCC mirrors the use of 

FFTW for the case of execution on CPUs. So, when during the stage of execution of the 

computations of convolution/LCCs a number of FFTs has to be performed, two CUFFT plans 

have already been created by the planning stage of FLCC. Again one of these plans contains 

all the necessary information for the execution of a Fourier transform from a real-valued 

convolution-sized signal to a complex-valued Hermitian-sized signal and the other for the 

inverse transform. Therefore the appropriate execution function of CUFFT is called (we use 

one for the real-to-complex execution and one for the complex-to-real execution for each 

individual convolution) and the respective plan and the two tables that correspond to the 

input and output signals are given as arguments. These two tables are allocated on the 

global memory of the device. Warning: the real-valued table that corresponds to the signal 

that exists on the spatial domain is of type cufftReal and of convolution size and the 

table that corresponds to the signal in the Fourier domain is of type cufftComplex and is 

of Hermitian size. These types are CUFFT’s embedded data types for the representation of 

real and complex elements respectively. 

CUFFT, as FFTW, performs much faster in transforms with dimension sizes that can be 

expressed as products of small prime factors. So, similar to the execution on a CPU, FLCC 

expands the dimension sizes of the tables to be transformed to the next it deems will lead to 

a fast transform. The sizes that are chosen are the same as those that are also chosen by 

FFTW (see previous paragraph) so we will not repeat ourselves. 

Let us move on to the means by which the point-by-point multiplications between 

signals in the Fourier domain are performed. As we have stated before we have to do with 

two tables allocated on the device memory that are of Hermitian size. A complex 

multiplication is executed between each couple of values of position   of the two tables and 

the result is stored in the position   of a third table, also of Hermitian size. With the inverse 

Fourier transform of this third table we get the convolution of the two initial signals. So for 

the computation of each of these complex elements of the      position of this third table 

only the complex elements of the      position of the first two tables are needed. So, to 

each CUDA thread the computation of an output element is assigned. We have therefore 

developed a kernel that runs for a number of threads equal to or less than the Hermitian 
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size. The computation of each element of the table is assigned to a thread of some block. 

Since the block size is constant (      for two dimensions,       for three), what 

changes is their number. For two dimensions, the upper left section of the table is assigned 

to the first block (assuming that the origin of the axes is located there) and each next is 

arranged to the left and down in a rectangular grid, receiving simultaneously the proper 

coordinates. Somewhat similar the apportionment of the jurisdiction of the blocks is 

performed for three dimensions. As for the arrangement of blocks in a grid, the same apply 

as stated in subsection 4.3.2 and thus we will not repeat ourselves. 

We should finally note that, exactly as in the case of the usage of FFTW, CUFFT requires 

the division of the output elements of the inverse transform by the convolution size, a 

process that is incorporated in the above kernel and is performed during the stage of the 

multiplication. 

4.3.4 Streaming Implementation 

In this subsection we will talk about the means by which streaming is implemented on 

FLCC. Except for the means by which the general algorithmic improvement is achieved due 

to streaming and has been thoroughly explained in chapter 2, we will talk about the 

particularities that occur when using a GPU. 

As we have already stated in the section about FLCC’s interface (4.2), the option is 

provided to the user to obtain the result of convolution/LCCs between one template and a 

series of images with just one call of the execution function. Let there be   images to be 

processed. It is consequent that after the execution of one of the executor functions on 

streaming mode there will also exist   convolutions/LCCs. This series of images we call a 

stream of images. This stream is given to one of the executor functions in the form of an 

array equal to the size of each individual image multiplied by  , on which all the images to 

be processed are stored. 

Internally in FLCC, for the execution of computations on a stream of images the same 

functions are used as in the case of an individual computation. Before the process of 

computation commences, a for loop structure starts that performs a total number of 

iterations equal to the number of images in a stream. Along one iteration the computation 

between one image from the stream and the template is performed, so that at the end of 

the loop the entire stream would have been processed. It is evident that in the case of the 

processing of a single image the loop will be executed only once (as a trivial case of 

streaming). In the case of streaming with the use of a Fourier domain method, the structure 

for contains within it only that part of the computations that must be performed for each 

new image and those parts that can be computed only once are computed before the for. 

The details concerning the algorithmic improvements in computations on streams of images 

have already been stated in chapter 2. 
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Let us discuss now some of the GPU’s particularities that hamper the performance of 

computations on a stream and the means with which we confronted them. A disadvantage 

in the use of the GPU is the long time needed for the transfer of data from the computer’s 

RAM to the global memory of the GPU and vice versa. For a single computation the transfer 

of the image and the template from RAM to global memory and the transfer of the 

convolution/LCCs from the global memory to RAM are required totally. For computations on 

a stream of images the transfers are the following: the template, all the images of the 

stream to the global memory and all the convolutions/LCCs back to RAM. This would be 

particularly time-consuming though CUDA provides an alternative that we exploit, not to 

avoid these transfers but to “hide” them under the computation time. CUDA lends the 

possibility for asynchronous concurrent data transfer and kernel execution for certain GPUs. 

The concept therefore is: during the time the convolution/LCCs between the  -th image and 

the template is computed, the      -th convolution/LCCs is concurrently transferred to 

RAM and the      -th image is transferred to the device. With this concurrency trick the 

only data transfers “visible” are the ones of the template and the first image to the global 

memory and of the last convolution/LCCs to RAM as the rest of the transfers are performed 

during the interval that the computations are concurrently performed. 

However a problem arises. Naturally no computations may be performed on an array 

during the time its elements are being changed because of transfers. Therefore we use two 

buffers, one of image size to have the image be transferred to it from RAM and one of 

convolution size to have the result be transferred from it to RAM. So the process is being 

done in two phases like so: 

1. During the first phase the following are being performed concurrently: 

 Transfer of next image from RAM to respective device buffer 

 Transfer of previous result to RAM from respective device buffer 

 Computation of current result 

2. During the second phase the following are being performed concurrently: 

 Transfer of image from image buffer to the position of array to be 

processed 

 Transfer of newly-computed result to result buffer 

In Figure 4.6 the above process is schematically depicted, where the operation of the 

aforementioned buffers in the individual phases of streaming is clearly presented. 

Let us state though that all the above are valid for the GPUs that support such 

processes. In the case the GPU does not support the concurrent transfer and execution, the 

various operations are performed correctly though in a serial way, having a proportionate 

impact to the overall performance. 

Having explained the logic with which streaming on a GPU is implemented, we will now 

talk about all the technical issues regarding this concurrent transfer and execution. The 

means by which CUDA performs this asynchronous execution is with the use of CUDA 

streams (beware not to confuse these with image streams). These streams are CUDA 

instruction sequences that can be executed concurrently. We use three streams, something 
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that is preordained by the first phase we described in which there is the requirement of 

three different operations being performed concurrently. So each one of the three individual 

operations of the first phase is assigned to a stream and thus the three of them can be 

executed in parallel. For the second phase the two out of three streams are being used for 

the two individual operations that are also being executed in parallel. We should note 

though that between the two phases the appropriate CUDA synchronization function is 

being called which ascertains that the operations of one phase have been terminated before 

the initiation of the other one. 

Figure 4.6: Streaming Process on a GPU 

Finally, for asynchronous data transfer, CUDA requires that the space in RAM that the 

data are stored or are to be stored be page-locked. CUDA provides the necessary functions 

for the correct allocation and deallocation of page-locked memory. These functions are 

called by our own flcc_malloc(…) and flcc_free(…), ascertaining that the memory 

is being allocated as page-locked and thus the overlap of transfer and execution is possible. 

We should state that an additional benefit of the use of page-locked memory is that the 

speed by which the data transfer between RAM and GPU is significantly increased 

(regardless of overlap or not with the execution). The mandatory disadvantage inherent in 

its use is that the maximum quantity of page-locked memory that can totally be allocated is 

limited in contrast to the respective quantity of regular allocated memory. 
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4.3.5 Plan-Execute Mechanism Implementation 

We will now talk about what exactly happens by each one of the main interface 

functions of FLCC. We will see, namely, what constitutes the stages of planning, execution 

and deallocation that constitute the main usage of FLCC. 

4.3.5.1 Planning Stage 

We will now explain what is being performed inside the planning functions by initially 

laying bare the code defining the data structure flccPlan. We remind the reader that an 

object of such a type constitutes the output of the aforementioned functions. Next we will 

explain how these functions compute everything that is inside this structure. 

typedef struct {         

 flccSize  imageSize;      

 flccSize  templateSize;     

 int   dimension;      

 flccMethod  method;      

 flccType  type;       

 flccPlatform platform;      

 int   numCpuCores;     

 int   numGpuDevices;     

 void *  c2r_plan_dev;     

 void *  r2c_plan_dev;     

 void *  c2r_plan_host_diff;    

 void *  r2c_plan_host_diff;                    

} flccPlan; 

 

The variables imageSize, templateSize, dimension, type and platform get 

the values of the respective arguments that are given by the user at the call of the planning 

function, as they are analyzed in subsection 4.2.1. In the case invalid elements are given the 

planning function returns a relevant error. 

The variable numCpuCores gets the value that also is given by the user during the 

installation of the FLCC library and corresponds to the number of threads that will be 

created using the pthreads library. 

The variable numGpuDevices constitutes the number of GPU devices that FLCC uses. 

Although FLCC still does not support sharing of the workload among multiple GPUs, this 

variable is always set to value   and presently is not used anywhere. We chose to implement 

it however because in some future version of FLCC this may change. 
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The user gives as the function’s input argument the sizes of the dimensions of the 

image and the template. The function calculates the convolution size and four plans are 

created, two by FFTW and two by CUFFT. For each couple, one plan contains the information 

for the half Fourier transform (real-to-complex) and the other for the inverse Fourier 

transform (complex-to-real). These plans are used inside the planning process of FLCC, are 

stored in the structure flccPlan and are the same that will possibly be used in the 

execution stage. Therefore, the executor function will use FFTW’s plans in case the Fourier 

domain method on a CPU is chosen and CUFFT’s plans in the case the Fourier domain 

method on a GPU is chosen. The plans’ types are declared as pointers to void so as to 

render that part able to be compiled in case the user does not have FFTW and/or CUFFT 

installed on their system. When some plan is being used later by the executor, the proper 

type casting is performed. 

The most significant part of the planning stage is the choice of the most suitable 

method for the execution of the computations. As we have previously seen in subsection 

4.3.1, different functions that implement each method, on each architecture and each 

number of dimensions have been developed. The means by which the information of which 

one of these functions must be called inside the execution function is stored in the plan is 

reflected on the variable method of flccPlan. This variable can get the values that are 

declared by the following enumeration: 

typedef enum {        

 FLCC_DIRECT2_DEV,       

 FLCC_DIRECT3_DEV,       

 FLCC_FAST2_DEV,        

 FLCC_FAST3_DEV,        

 FLCC_DIRECT2_HOST,       

 FLCC_DIRECT3_HOST,       

 FLCC_FAST2_HOST,        

 FLCC_FAST3_HOST,        

 FLCC_NULL_METHOD          

} flccMethod; 

 

From the above strings, the word DIRECT designates the direct method, FAST 

designates the Fourier domain method, the numbers   or   designate the dimension of the 

problem, DEV designates the implementation of the method on a GPU and HOST designates 

the implementation on a CPU. The last string FLCC_NULL_METHOD is a safety net in the 

case none of the existing methods could be chosen. 

The logic of the process for choosing methods is the following: for random image and 

template tables of the given dimensions the corresponding computations are performed 

(convolution or LCCs) using each one of the available functions. Each one of the individual 

functions is timed with precision and the function that requires the least time to perform the 

computations on the random data is the one that gets chosen to be used in the execution 

stage and the respective tag will be stored in the variable method of the plan object. 
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There is a possibility that any of the functions may fail in its execution (for example due 

to a lack of space in RAM or a disconnected GPU), in which case some error is returned. So, 

before any decision is made regarding the choice of the most suitable method, the element 

method is set to the value FLCC_NULL_METHOD. For the first function that succeeds in its 

computations, the corresponding string is given to the variable method. For every next 

function, if it fails it is discarded without further analysis. If on the other hand it terminates 

successfully and its execution time is less that the execution time of the one that 

corresponds to the string that is at any time stored in the variable method, then the new 

relevant string is stored. This way, even if all the individual methods fail, the value of 

method will still be FLCC_NULL_METHOD and the planning function, taking that fact into 

account, will return a relevant error thus notifying the user. 

In the case the user has chosen the value FLCC_STREAM for the variable type the 

timing is done in another way. Instead of timing the regular functions that execute the 

computations (as in the case of the value FLCC_SINGLE), some other functions are timed 

that, for each case, execute only those computations that are required for any new image of 

belonging in the stream and not those that are performed once (in the last are also included 

the data transfers among RAM and GPU). These functions do not compute the real result of 

convolution/LCCs, however they simulate in a much better way the time required per image 

in the stream and therefore produce more reliable results compared to the executions of 

the regular functions. 

Let it be noted finally that if the user selects via the platform to contain the 

execution of the computations in only one platform, the planning function will respond 

accordingly by excluding from the timing process all those methods that are to be executed 

in the non included platform. Something similar happens in the case the user has chosen to 

install FLCC without the use of the libraries FFTW and/or CUDA. In that case the code 

sections that time the methods using the excluded libraries will not be compiled. 

4.3.5.2 Execution Stage 

When an execution function is called, an object of type flccPlan is given as an 

argument that has resulted from a previous execution of a planning function. The execution 

function knows what computation function it is supposed to use by reading the value of the 

variable method. The rest of the information that is contained in the plan, meaning the 

image and template sizes, the existence or not of a stream of images, (if needed) the pre-

computed plans of FFTW or CUFFT and (if needed) the number of threads to be created, are 

used by the execution function so as to use as arguments for the proper call of the 

designated method. Finally, we remind the reader that the tables on which the 

computations will be performed are given as arguments to the execution function and are 

conveyed by it to the appropriate computation method. 
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4.3.5.3 Deallocation Stage 

The objective of the functions that destroy the FLCC plan is essentially to destroy the 

plans of FFTW and CUFFT by calling their appropriate deallocation functions. It is a fact that 

the plans of those two libraries allocate system memory that is advisable to be deallocated 

when they are not further needed. The existence of the deallocation functions of FLCC 

preserves the transparency to the user regarding those two libraries and furthermore 

secures in any case the proper destruction of the plans. 
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5 Experiments 

In chapter 4 we presented FLCC library and we described its particular characteristics. In 

this chapter we will thoroughly test the library through a series of experiments in order to 

show its computational capabilities. At the same time, we will explore the way in which its 

various algorithmic and architectural features, as they have been analyzed so far, affect its 

behavior and determine its performance. 

The experiments we are about to present in the following sections were carried out on 

a computer system of a multi-core processor (CPU), equipped with a Graphics Processing 

Unit (GPU). Their technical features are described in Table 5.1 and Table 5.2 respectively. 

Table 5.1: CPU’s Technical Features 

Model Intel Xeon E5620  
Clock speed      GHz 
Number of cores     with hyper-threading 
Cache memory size    MB 
RAM size    GB 
Operating system GNU/Linux 

 

Table 5.2: GPU’s Technical Features 

Model NVIDIA Tesla C1060 
Clock speed      GHz 
Number of cores     
Shared memory size    KB/block 
Global memory size   GB 
Driver program CUDA Driver v4.0 

 

The presentation of the experimental results is divided into three sections. The first one 

(5.1) is about the comparative performance of the algorithms the library implements. The 

second one (5.2) focuses on the comparative performance of the two architectures that are 

used (multi-core processor and GPU). The third and last one (5.3) examines the behavior of 

the plan-execute mechanism that governs the library’s functionality. 

We shall finally note that the FLCC library’s version that was used in all experiments 

presented here is FLCC v1.3. 
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5.1 Comparative Performance of Algorithms 

In chapter 2 we developed two different methods for the computation of both 

convolution and Local Correlation Coefficients (LCCs). These are the direct method and the 

Fourier domain method (with or without streaming), which, after having been adapted to 

the peculiarities of both convolution and LCCs, derive four different algorithms, two for 

convolution and two for LCCs. The library implements these four algorithms separately for 

the two-dimensional and the three-dimensional cases. Distinct implementations also exist 

for the multi-core processor (CPU) and the Graphics Processing Unit (GPU). In this section we 

measure the time performance of the entire set of the above    routines for a range of 

different image and template sizes and we present the results in diagram form. 

5.1.1 Constant Image – Varying Template 

To begin with, we will measure the time performance of each algorithm for a constant 

image size and a varying template size. 

We start with the two-dimensional case, where the image was chosen to have a size of 

          pixels while the template size varies from     to       pixels with a step 

of   pixel in each dimension (always square). In Figure 5.1 we can see the execution times on 

CPU, using    threads. The diagrams show the execution times for both a single image and 

the streaming case of    images, with time being per image. 

 

Figure 5.1: Execution Times on CPU for Constant 2D Image 
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Similarly, in Figure 5.2 we can see the corresponding execution times on GPU. 

 

Figure 5.2: Execution Times on GPU for Constant 2D Image 

The conclusions following from the above diagrams are both many and interesting. First 

of all, we observe that the execution time of the direct method increases at a quadratic rate 

while the execution time of the Fourier domain method remains steady. This fact fully 

confirms the theoretical analysis on the algorithms that was developed in chapter 2, where it 

had been predicted that the execution time of the direct method demonstrates substantial 

dependence on the size of the template, contrary to the Fourier domain method where the 

execution time (for relatively small templates) depends almost exclusively on the image size 

and remains practically unaffected by template size. 

The second conclusion that is noteworthy has to do with the effect of streaming on 

execution time. We had theoretically predicted that the direct method does not benefit by 

streaming. Indeed, in the case of CPU the execution time with or without streaming appears 

to be the same. In GPU though there is everywhere a constant time improvement of about 

     ms. This improvement is not algorithmic but rather technical. In order for the 

computation to be executed on the GPU the relevant data need be transferred from RAM to 

GPU’s global memory, which in principle requires a certain non-negligible amount of time. 

Nonetheless, in the case of streaming, meanwhile an image in the stream is being processed, 

the next image to be processed is being transferred to GPU, so that it will be available when 

its turn should come. At the same time, the result is being transferred back from GPU’s 

global memory to RAM. This way, data transfers are literally being “hidden” behind 

execution, thus inducing an improvement in the execution time per image that corresponds 

to exactly the time needed for data transfer. On the other hand, in the case of the Fourier 

domain method, the improvement achieved by streaming is a remarkable one in any case. 

Table 5.3 presents this time improvement in real percentages versus theoretically predicted 

ones.  



Georgios Papamakarios, Georgios Rizos 

98 

Table 5.3: Fourier Method’s Improvements in Streaming for Constant 2D Image 

 Convolution LCC 

Improvement on CPU               
Improvement on GPU               

Theoretical Improvement             

 

We notice that the Fourier domain method indeed confirms the theoretically predicted 

time improvements that were achieved by algorithmic means (FFT pre-computation, see 

chapter 2 for details). In addition to that, in the GPU case the improvement is even greater, 

thanks to the overlapping in transfer and execution which is realized in the same way as in 

the direct method and was described in detail above. 

Our third major conclusion regards the “critical point”, that is the template size for 

which the execution times of the direct method and the Fourier domain method become 

equal. The significance of this size is fundamental to the functionality of the library as it 

signifies the “preference border” between the two methods. Table 5.4 indicates the critical 

template sizes in each case in comparison with the theoretically predicted ones. 

Table 5.4: Critical Sizes of 2D Template 

 Convolution LCC 

 Single Streaming Single Streaming 
CPU                       
GPU                         

Prediction                         

 

From the above values it becomes clear how the critical template size depends on the 

architecture implementing the algorithm. In the case of the multi-core processor, the critical 

size appears to be slightly smaller than the theoretically predicted one, a fact which is mainly 

due to the excellent performance of the FFTW library through which the Fourier domain 

method’s FFTs are computed on the CPU. On the other hand, on the GPU the critical size 

seems to be somewhat greater than the theoretically predicted one, a fact which 

demonstrates the GPU’s “preference” on algorithms with a high parallelism potential, such 

as the direct method, against harder to be parallelized ones, such as the FFT and hence the 

Fourier domain method. 

We move on to repeat the same experiment as above, this time on the three-

dimensional case instead. The image here was selected to have a constant size of 

            pixels while the template varies from       to       pixels with a 

step of   pixel in each dimension (always cubic). Figure 5.3 shows the execution times on 

CPU (with    threads) for both a single image and streaming of    images, with time being 

per image. 
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Figure 5.3: Execution Times on CPU for Constant 3D Image 

Similarly, Figure 5.4 shows the corresponding execution times on GPU. 

 

Figure 5.4: Execution Times on GPU for Constant 3D Image 

The conclusions following the three-dimensional case are similar to those of the two-

dimensional case. In fact, we observe that the execution time of the direct method increases 

substantially as the template size gets bigger whilst the execution time of the Fourier 

domain method remains at the same level. Streaming’s effect is in the same way beneficial. 

Even if the direct method is not affected on CPU, we notice that on GPU it does benefit by 

streaming for a steady amount of time of about     ms, due to the overlapping in data 

transfer and execution. The Fourier domain method, as expected, is further benefited. Table 

5.5 indicates the percentage improvements on the execution time of the Fourier domain 

method thanks to streaming. 
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Table 5.5: Fourier Method’s Improvements in Streaming for Constant 3D Image 

 Convolution LCC 

Improvement in CPU               
Improvement in GPU               

Theoretical Improvement             

 

We notice that on CPU the time improvements vary around the expected ones while on 

GPU they appear to be even greater, due to the further benefit of the overlapping in transfer 

and execution. Finally, Table 5.6 lists both real and theoretical critical sizes of three-

dimensional template, as these follow from the diagrams and the theoretical analysis 

respectively. 

Table 5.6: Critical Sizes of 3D Template 

 Convolution LCC 

 Single Streaming Single Streaming 
CPU                         
GPU                         

Prediction                         

 

We see on the above table that the real critical sizes agree with the theoretically 

predicted ones. 

5.1.2 Constant Template – Varying Image 

We now move on to the second phase of our algorithmic experiments, where we will 

measure the time performance of the various routines of FLCC library for a constant 

template size and a varying image size. 

We begin with the two-dimensional case, where the template was selected to have a 

size of       pixels while the image varies from           to           pixels with 

a step of     pixels in every dimension (always square). In Figure 5.5 we can see the 

execution times on CPU (with    threads) for both a single image and the streaming of    

images, with time being per image. 
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Figure 5.5: Execution Times on CPU for Constant 2D Template 

Similarly, in Figure 5.6 we can see the corresponding execution times on GPU. 

 

Figure 5.6: Execution Times on GPU for Constant 2D Template 

From both the above diagrams it is apparent that the execution time of both methods 

increases at a quadratic rate as the image size gets bigger, as it is predicted by the 

theoretical complexities of the corresponding algorithms. The above is the basic difference 

that the variations in the image and template sizes have on the execution time of the two 

methods. Indeed, the execution time of the direct method increases at the same rate as 

both sizes increase, whilst the execution time of the Fourier domain method is only affected 

by the image size and not by the template size. 
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The effect of streaming is obvious in the above diagrams. We can see the improvement 

on the execution time of the direct method on the GPU due to the overlapping in transfer 

and execution. We can also see that this improvement increases in absolute numbers as the 

image size gets bigger, which is quite rational if we think that a larger image size implies a 

greater delay for the transfer of the image and the result to and from the GPU’s global 

memory respectively. It is interesting to compare the above to the experimental results for a 

constant image size, where the time improvement of the direct method was a constant 

number. On the other hand, in the case of the Fourier domain method, Table 5.7 lists both 

the real and the theoretical improvement percentages on the execution time thanks to 

streaming. 

Table 5.7: Fourier Method’s Improvements in Streaming for Constant 2D Template 

 Convolution LCC 

Improvement on CPU               
Improvement on GPU               

Theoretical Improvement             

 

It appears from the above table that the time improvements on CPU vary around the 

predicted ones. On GPU they are even greater due to the overlapping in transfer and 

execution. 

It is interesting to notice that the execution time of the Fourier domain method appears 

to increase in a scale form, or in other words in the form of successive “stairs”. In fact, this is 

due to the technical implementation of this method by the FLCC library. It is true that the 

libraries that have been used in FLCC for FFT computation, namely the FFTW library on CPU 

and the CUFFT library on GPU, perform a lot faster when the signal to be transformed has 

“good” dimensions, that is dimensions that can be expressed as a product of small prime 

factors, with the best case being powers of two. The difference in performance is so big that 

FLCC chooses instead to “enlarge” the images to be processed by adding zeros, in order to 

achieve image dimensions that, according to FLCC, lead to a faster transform. Of course, 

these zeros do not distort the result in any way and are removed at the end of the 

processing. This way, all images in a certain range of dimensions are enlarged to the next 

“good” dimensions. This practice, which leads to efficient processing even of images of 

“difficult” dimensions (such as large prime numbers), is what causes the scale form in this 

method’s execution time. 

We proceed to the three-dimensional case. The template is selected to have a constant 

size of       pixels and the image varies from          to             pixels 

with a step of    pixels in each dimension (always cubic). Figure 5.7 presents the execution 

times on CPU (with    threads) for both a single image and the streaming of    images, with 

time being per image. 
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Figure 5.7: Execution Times on CPU for Constant 3D Template 

Similarly, Figure 5.8 presents the corresponding execution times on GPU. 

 

Figure 5.8: Execution Times on GPU for Constant 3D Template 

The conclusions following from the above diagrams are similar to those of the two-

dimensional case. We see that both methods exhibit a similar increase rate in their 

execution time as the image size increases. Streaming causes an improvement to the direct 

method on GPU, which corresponds to the transfer time of the image and the result and 

becomes larger, in absolute time units, as the image size increases. In the case of the Fourier 

domain method, Table 5.8 includes the real time improvements in comparison with the 

theoretical ones. 



Georgios Papamakarios, Georgios Rizos 

104 

Table 5.8: Fourier Method’s Improvements in Streaming for Constant 3D Template 

 Convolution LCC 

Improvement on CPU               
Improvement on GPU               

Theoretical Improvement             

 

We can see that the improvements on CPU vary around the expected ones while on 

GPU they are even greater due to the overlapping in transfer and execution. Finally, notice 

that also here the execution time of the Fourier domain method appears to increase in a 

scale form, which is due to the enlargement of images to the next dimensions that produce 

fast transforms, as it has already been explained. 

5.2 Comparative Performance of Architectures 

Having completed the comparative analysis among the various algorithms used in the 

FLCC library, in this section we focus on the time performance of the architectures 

themselves on which the algorithms are implemented, namely the multi-core processor and 

the Graphics Processing Unit. Our aim is to study the way each algorithm behaves on each 

architecture, how each architecture’s special characteristics affect the time performance of 

the algorithms and finally what is the comparison in performance between the two 

architectures. Of course, this study will inevitably refer to the system we have and use, we 

hope though that the special results that will be obtained will have the ability to be 

generalized beyond the limits of a certain system and thus will describe effectively a large 

group of systems of the same kind, leading to conclusions for multi-core processors and 

Graphics Processing Units in general. 

Before we start referring to experimental results, we will attempt to provide a 

somewhat naïve but indicative first answer to the question of what the relation between the 

performances of CPU and GPU on our system is. Our CPU contains   cores with hyper-

threading technology (so virtually    cores) and has a speed of      GHz, while our GPU 

contains     cores and has a speed of      GHz. Taking into account the above parameters 

we get: 

    

  
 
        

        
       (5.1) 

In other words we expect the GPU to be typically around       times faster than the 

CPU. Of course this value is simply indicative since we do not take other important factors 

into account at all, with the main one left out being memory access speed. Using it as a 

reference point, though, we should be able to say that if for some algorithm the relative 

performance between GPU and CPU is greater than       then the algorithm shows a clear 

preference to the GPU, likewise if it is much lower than       its preference seems to be the 
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CPU and finally if the two values are close to each other then the two platforms support 

equivalently the implementation of the algorithm. 

5.2.1 Constant Image – Varying Template 

We proceed to the presentation of the experimental results. First of all, we will use the 

results that were obtained from the experiments of section 5.1 and we will present them in 

such a way that reveals the relative performance between the two architectures. We begin 

with the two-dimensional case of a constant image size and a varying template size. Figure 

5.9 presents the ratio of the execution time on CPU (with    threads) over the execution 

time on GPU. We remind that the image is of size           pixels while the template 

varies from     to       pixels with a step of   pixel in each dimension (always square). 

The diagram shows the time ratio for both a single image and the streaming of    images. 

 

Figure 5.9: Comparison between CPU and GPU for Constant 2D Image 

From the diagrams we can see, as it was expected, that the GPU is generally faster than 

the CPU. Based on the above results, we examine first the direct method in detail. We 

observe that for quite small templates the GPU is not significantly faster than the CPU but as 

template size increases, the direct method appears to prefer GPU to CPU. We may say that 

for large templates the GPU seems much more appropriate for the implementation of the 

direct method while for small ones its advantage vanishes. This result is a rather expected 

one since the GPU is designed to perform best for algorithms of high parallelizability and 

computational intensity. The direct method belongs certainly to this category, with its 

computational intensity being proportional to template size. For small templates, the ratio 

of computation over data transfer to/from memory is quite low, leading the GPU, whose 

memory is undoubtedly its weak point, to lower performance. On the other hand, the 

Fourier domain method appears to be steadily about   times faster on GPU. Since this value 

is half of       that we consider to be a logical value for performance comparison between 
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GPU and CPU, we arrive to the conclusion that the Fourier domain method performs better 

on CPU. This is a result that we have implied several times, stating that the FFT is an 

algorithm not ideally suitable for implementation in a GPU environment. Also, the fact that 

CPU appears to be more appropriate than GPU for the Fourier domain method is certainly 

assisted by the usage of FFTW for the execution of FFTs on CPU, whose high performance is 

definitely well-established. 

Another weak point of GPU is the unavoidable transfer of necessary data between RAM 

and GPU’s global memory, which is in principle non-negligible and, in several cases, causes a 

significant delay to the overall processing time. In the case of streaming, though, data 

transfer is able to be carried out simultaneously with computation and therefore does not 

affect negatively GPU’s efficiency. The above is apparent in the diagrams, since GPU’s speed 

compared to CPU increases significantly in the case of streaming, thus canceling its 

disadvantage and revealing its true computational power. 

We continue with the comparison between CPU and GPU in the three-dimensional 

case. In the following diagrams, the image remains at a constant size of             

pixels while the template varies from       to       pixels with a step of   pixel in 

each dimension (always cubic). Figure 5.10 records the execution time on CPU (with    

threads) divided by the execution time on GPU (or in other words the performance ratio). 

Results for a single image and the streaming of    images are both presented. 

 

Figure 5.10: Comparison between CPU and GPU for Constant 3D Image 

The above results agree with those of the two-dimensional case. As it has been stated, 

GPU performs better for cases where the ratio of computation over data transfer is 

relatively high, therefore, as it can be observed, GPU performance increases as the template 

gets larger. Nevertheless, while in the two-dimensional case the direct method appeared to 

be up to    times faster on GPU than on CPU (without streaming), here the ratio is no more 

than  . The Fourier domain method on the other hand is steadily     times faster on GPU, 

similarly to the two-dimensional case. Since this value is considered somewhat low for the 
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relative capabilities of GPU, it follows that this method performs better on CPU. This is due 

on the one hand to the FFT being an algorithm with low ratio of computation over data 

transfer and on the other hand to the powerful FFTW library supporting its computation on 

CPU. 

Also here it can be seen that streaming cancels GPU’s disadvantage on data transfer 

to/from its global memory, thus increasing significantly its relative performance. 

5.2.2 Constant Template – Varying Image 

We continue with the two-dimensional case of a constant template size and a varying 

image size. We remind that the template is of a constant size of       pixels while the 

image varies from           to           pixels with a step of     pixels in each 

dimension (always square). Figure 5.11 presents the execution time on CPU (with    

threads) divided by the execution time on GPU, for both a single image and the streaming of 

   images. 

 

Figure 5.11: Comparison between CPU and GPU for Constant 2D Template 

In the diagrams above it appears that the direct method is steadily about      times 

faster on GPU than on CPU (for a single image). We see that the relative performance of 

GPU for the direct method remains practically independent of image size. That means the 

relative performance of GPU for that method is affected only by template size and not by 

image size and, as we have already seen, GPU’s performance increases as the template 

becomes larger. On the other hand, the Fourier domain method performs on GPU not as 

successfully as the direct method, as we have already seen in our previous experiments. 

Also, we observe that its relative performance decreases at a slow but steady rate as the 

image becomes larger. This happens because for a larger image, and hence larger transform, 
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the requirements on memory access of the FFTs increase and therefore GPU’s work, whose 

memory as it has been mentioned is its weak point, becomes harder. 

Again it appears that streaming, thanks to the elimination of the overhead for data 

transfer, increases substantially GPU’s efficiency, especially in the case of the direct method 

where the performance almost doubles. 

Lastly, we examine the three-dimensional case of a constant template size and a varying 

image size, where the template is of a size of       pixels and the image varies from 

         to             pixels, with a step of    pixels in each dimension (always 

cubic). Figure 5.12 presents the execution time on CPU (with    threads) divided by the 

execution time on GPU, for both a single image and the streaming of    images. 

 

Figure 5.12: Comparison between CPU and GPU for Constant 3D Template 

Also here the observations agree with the two-dimensional case. The direct method 

steadily appears about   times faster on GPU, for any image size, while the Fourier domain 

method is less efficient on GPU and its performance slowly decreases as image size 

increases. Streaming increases GPU’s performance, especially for the direct method. 

5.2.3 Number of Threads 

Until now we have thoroughly studied the comparison between CPU and GPU, under 

various circumstances. In this subsection we focus exclusively on the CPU and particularly on 

the number of threads running on it. Up to this point, in all our experiments on CPU we 

always used    threads. The number of threads that the FLCC library uses when it runs on 

CPU, as it has been said, is determined by the user once and for all during FLCC’s installation 

time and cannot be modified in runtime. It is therefore important to know for what number 

of threads the library performs best, in order to be in the position to make the most suitable 

choice. 
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In the next experiment we examine how the execution time of the various algorithms of 

FLCC library is affected when they run on CPU with different numbers of threads. For the 

two-dimensional case we will use an image of           pixels and a template of 

      pixels. Figure 5.13 shows the execution times per image, for a single image and the 

streaming of    images. The number of threads progresses geometrically from   to     , 

with the intermediate values being successive powers of two. 

 

Figure 5.13: CPU Execution Times 2D for Varying Number of Threads 

For the three-dimensional case we select an image of size             and a 

template of size      . Figure 5.14 presents the execution times per image, for a single 

image and the streaming of    images. The number of threads progresses geometrically 

from   to     , with its values being successive powers of two. 

 

Figure 5.14: CPU Execution Times 3D for Varying Number of Threads 
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From the above diagrams it follows that both the direct method and the Fourier domain 

method behave in a similar way as the number of threads varies. In particular, we observe 

that the execution time, for a number of threads from   to   , appears to be somewhat 

inversely proportional to the number of threads. For more than    threads, the execution 

time seems to stabilize at a low level before starting to rise again at a slow but steady rate as 

the number of threads increases. 

In order to understand the reasons behind this behavior, we need to take into account 

that our system’s processor contains   physical cores with a common memory, which have 

the ability to operate simultaneously at the same data pool (an architecture of SMP type). 

Furthermore, this particular processor supports hyper-threading technology and therefore 

each core is capable of executing two threads in parallel, leading to a number of     virtual 

cores. Thus, for as long as the number of threads remains smaller than the number of 

(virtual) cores, there is further computational potential not being exploited. Given that the 

algorithms demonstrate a high level of parallelizability regarding the data to be processed, 

the inverse proportional relation shown in the diagram is derived. In simpler words, it 

appears that the computational load is distributed evenly and independently among cores, 

as long as there are cores available. When the number of threads becomes equal to the 

number of (virtual) cores, that is when all cores are fully occupied, the execution time 

reaches its lowest point. From then on, the execution time cannot be further reduced, since 

there no longer exist computational resources to be utilized. On the contrary, further 

increase in the number of threads generates a small rise in execution time, due to the 

accumulated time delay induced by the creation and scheduling overhead of the extra 

threads.  

Based on the experimental results and the above analysis, it follows that the optimal 

number of threads is essentially the number of independent (virtual) cores of the system or 

at most a slightly larger one. This way not only the utilization of the hardware resources of 

the system is maximized but also the overpopulation of threads that would slow the system 

down is avoided.  

5.3 Behavior of Plan-Execute Mechanism 

In sections 5.1 and 5.2 we studied the time performance of the FLCC’s routines that 

implement its various algorithms for every possible case. The way the FLCC library works, 

though, is not as simple as that. Its interface provides the user with access to a level of 

functions which is implemented on top of the level of the routines implementing the various 

algorithms. We refer here to the level of functions that implement the library’s plan-execute 

mechanism, which can be seen as the “entry point” of the user in the library. Instead of the 

user selecting the most suitable routine for the computation of each case, this task is 

automatically carried out by the library itself, without the user needing to have any kind of 

special knowledge about the implementation of the various algorithms and their 

characteristics. This is done via the functions of planner type, which receive the parameters 
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of the computation as an input and return the optimal, in their opinion, methodology of 

executing the computation, which, among others, includes the selected algorithm and the 

suggested architecture. From then on, the user only needs to call the function of executor 

type with the data to be processed and the library executes the computation for them in the 

optimal way. In this section we will experimentally study the behavior of the library’s 

planning stage, a stage which, as we have seen, constitutes the “connective tissue” among 

all the various features of FLCC library. In particular, we are interested to record, for a 

number of different cases, the planning stage’s output, namely the selected computation 

routine, and to find out whether this choice is consistent with the experimental results of 

our analysis so far. 

As we have seen in chapter 4, the planning functions receive as input the dimensions of 

the image and the template, a parameter that denotes whether we have a single image or a 

stream of images and another parameter that designates the desired platform for the 

computation to be executed on. The last one may be CPU, GPU, or either.  In any case, the 

output of the planning function will be an object of plan type which, among others, will 

contain the selected routine. The aforementioned parameter for platform selection limits 

the search for an optimal solution to only one of the two available platforms, if its value 

specifies such, or allows the library to freely select by itself the most suitable platform, if its 

value is “any of the two”. The selection of this parameter’s value is up to the user, based on 

the system available to them and their specific needs. 

In the experiments we are going to present in the following subsections, we record the 

selected computation routine for a multitude of different image and template dimensions, 

for both a single image and a stream of images. As for the execution platform, we chose to 

present results separately for each one of the two platforms, in other words to set the 

platform selection parameter in the planning functions first to “CPU” and then to “GPU” and 

avoid the value “any of the two”. In the last case, given that in our system GPU is in principle 

more powerful than CPU (as the results of section 5.2 have shown), the GPU would 

dominate in most cases (if not all), with CPU becoming practically invisible. Of course, in a 

different system where CPU and GPU were comparable, studying the free selection option 

for planning would certainly be of greater interest. 

5.3.1 CPU Results 

In this subsection, we will begin by presenting the results on the CPU and in particular 

the two-dimensional case. Both the template and the image here are chosen to always be 

square. The template size varies linearly from     to       pixels with a step of   pixel 

in every dimension while the image size varies geometrically from       to           

pixels, the intermediate values being successive powers of two. Figure 5.15 presents the 

selections for the computation routine on the CPU in the form of a color map, in the case of 

a single image. 
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Figure 5.15: Method Selection on CPU for 2D Single Image 

Similarly, Figure 5.16 presents the selection on the CPU for the two-dimensional 

streaming case. 

 

Figure 5.16: Method Selection on CPU for 2D Streaming 

We observe that the selection between the direct method and the Fourier domain 

method agrees both with the theoretical analysis and the experimental results so far. 

Indeed, it appears that in every case there exists a certain template size (to which we have 

referred as critical size) which distinguishes the selection between the two methods. For 

template sizes smaller than the critical size it appears that the direct method is selected 

while for larger ones the Fourier domain method is selected. Furthermore, we observe that 

the critical size depends on the image size, as well as on whether we have streaming or not. 

Also, the critical size is different between convolution and LCC. 
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It is interesting to compare the results between the case of a single image and the case 

of streaming. We note that in streaming the Fourier domain method appears “stronger” 

than in the single image case. This is rather expected if we remember that the Fourier 

domain method algorithmically benefits from streaming, contrary to the direct method 

which does not. We shall note here that the planning function of FLCC library, in the case of 

a single image, selects the optimal method by measuring the time performance of the actual 

algorithms, leading to results of absolute precision. On the contrary, in the streaming case, 

the planning function times a modified version of the algorithms which simulates what 

happens per image. In spite of the latter algorithms not corresponding to an actually 

meaningful computation, this way the library makes a reliable estimation about the time 

that would be required for streaming, thus giving itself the possibility to select the optimal 

method, if not with absolute precision such as in the case of a single image, at least with a 

fair amount of certainty. This mechanism allows the library to modify its selections between 

the two cases, so that these selections correspond better to reality, as it is shown by the 

above experimental results. 

We proceed to presenting the results for the three-dimensional case. Both the template 

and the image here are chosen to be cubic. The template size varies linearly from       

to       pixels with a step of   pixel in every dimension, while the image size varies 

geometrically from       to             pixels, with the intermediate sizes being 

successive powers of two. In Figure 5.17 we can see the selections for the computation 

routine on the CPU in the form of a color map, when the selection regards a computation of 

a single image. 

 

Figure 5.17: Method Selection on CPU for 3D Single Image 

Similarly, Figure 5.18 presents the color map of CPU selections for the three-

dimensional case of streaming. 
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Figure 5.18: Method Selection on CPU for 3D Streaming 

The results are quite as expected and agree with those of the two-dimensional case. We 

see that the direct method is mostly selected for the relatively smaller templates whilst the 

Fourier domain method is preferred for the larger ones. Furthermore, when the selection 

regards streaming, we notice that the Fourier domain method appears stronger in 

comparison with the selection for a single image. 

5.3.2 GPU Results 

We move on to presenting the FLCC library’s selections when we use the GPU as the 

platform for execution. In Figure 5.19 we can see the color map of the planning results for 

the two-dimensional case of a single image. 

 

Figure 5.19: Method Selection on GPU for 2D Single Image 
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Similarly, in Figure 5.20 we can see the color map of the results for the two-dimensional 

streaming case on the GPU. 

 

Figure 5.20: Method Selection on GPU for 2D Streaming 

GPU’s selections reveal a pattern similar to that of CPU. We can see that also here the 

direct method is preferred for smaller templates while the Fourier domain method 

dominates for larger ones. It is important to note that, compared to CPU results, the direct 

method prevails in a much larger part of the map, due to its excellent performance on GPU, 

as it has also been noted in section 5.2. In the case of streaming, we see that, as it is 

expected, the Fourier domain method becomes stronger compared to the single image case. 

In conclusion, we will present the results for the three-dimensional case when the 

selection takes place on the GPU. In Figure 5.21 we can see the color map of the selections 

when they regard a single image. 

 

Figure 5.21: Method Selection on GPU for 3D Single Image 
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Similarly, Figure 5.22 presents the respective color map for the GPU when the selection 

regards three-dimensional streaming. 

 

Figure 5.22: Method Selection on GPU for 3D Streaming 

From the above results we notice that the direct method strongly overpowers the 

Fourier domain method on the GPU in comparison with the CPU, since the GPU appears to 

be more suitable for its implementation. In fact, it seems that in the case of a single image 

LCC the direct method is selected for the entire set of cases. In the case of streaming, the 

Fourier domain method is slightly more preferred than in the case of a single image. 

A detail in the above diagrams that we would like to highlight is the case where the 

image is of size            , in which the direct method is always selected while we 

would expect the Fourier domain method to appear among the selections too. This is due to 

the fact that in our system the CUFFT library, which computes the FFTs on GPU, crashes for 

this particular image size, inevitably leading the algorithms using it to fail as well. This failure, 

though, provides us with the opportunity to demonstrate another interesting feature of the 

planning functions. In fact, we see that in case some algorithm of those being tested during 

planning fails, the planning function does not fail but instead it detects the particular 

algorithm’s failure and excludes it from the selection process. Thus, we see that when the 

Fourier domain method happened to fail, the planning function returned the direct method 

as the suggested one, so that even in this case the computation be executed unobstructedly 

and transparently. 
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6 Conclusions 

In this diploma dissertation we extensively occupied ourselves with the subject of 

computing two operations central in the field of image processing (and signal processing 

generally). These are: convolution and correlation coefficients, with or without local 

normalization, between an image and a filter/template. We saw that these two operations 

are of great importance, as much in theory as in practice. First of all, they are met in a great 

number of image processing operations and problems, many times comprising basic, integral 

stages thereof. Because of this, their physical and mathematical importance is indisputable. 

Indeed, we saw that convolution is at the heart of linear and space-invariant systems (LSI), 

systems that constitute a large part in signals’ and systems’ theory generally. Additionally, 

correlation coefficients are one of the most useful and widespread definitions of the concept 

of “linear dependence”, which has widespread theoretical and practical application. 

Nevertheless, we ascertained since the beginning of our dissertation that, despite their 

frequency and usefulness, their computational complexity itself obstructs their application in 

practice. We noted that both these operations show high computational complexity that 

stems from their own mathematical definition. Especially when there is need for local 

normalization of the factors, any naïve means for confronting the issue becomes prohibitive. 

What is more, the requirements of modern applications stand to worsen the situation. Very 

often in practice there is the need of real-time data processing (like video processing), that 

set austere specifications on the time efficiency of each processing operation. Furthermore, 

a lot of scientific, medical, recreational and other applications require the processing of 

images with very high definition (like HDTV) or even of three dimensions (e.g. axial 

tomography), which raise the computational requirements to even further heights. 

All the above render the need for solutions for the problem of the efficient computation 

of convolution and correlation coefficients, critical and imperative. To this direction, this 

diploma dissertation strives to confront this matter in a holistic way, by examining as much 

the theoretical methods as the hardware architectures that could efficiently support their 

computation. According to that line of thought, we developed and analyzed efficient 

algorithms for the theoretical calculation of the operations under examination and we chose 

suitable architectures for the practical execution of the algorithms. Furthermore, we 

proceeded in combining the above under a practical scheme and we produced a complete 

solution for the problem, the FLCC library. 

Let us begin with an overview of the algorithms. We used two basic methodologies that 

we called “direct method” and “Fourier domain method”. The former attempts the 

computation of convolution and correlation coefficients in the domain of space, efficiently 

interpreting the mathematical definition. The latter completely transfers the computation in 

the frequency domain, achieving in any case a significant decrease of the computational 
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complexity. We managed to adapt our methodology as much to convolution as to 

correlation. It is noteworthy that, regarding the latter, the methods’ application is achieved 

even in the difficult case of local normalization. Indeed, even when performing 

normalization, the direct method may still calculate the result in only one pass, while the 

Fourier domain method is still able to execute the full computation in the frequency domain, 

exactly as it happens without the normalization. Thus, the increase in complexity that is 

induced by local normalization is noticeable only on the constant factors and not on its rank. 

We did not stop there though. By taking into account the special characteristics of signals 

representing images, we introduced two further improvements in the Fourier domain 

method. The first one refers to the FFTs’ computation, which can be done in half the time by 

taking into account the fact that signals representing images are always real-valued. The 

second one has to do with the introduction of the idea of image streaming, i.e. the 

processing of a series of images with the same template. By taking this into account, the 

total processing time may be reduced by nearly one third. Finally, by examining their 

arithmetic complexities, we saw that the efficiency of the direct method is significantly 

dependent on the template’s size, contrary to  that of the Fourier domain method which is 

dependent respectively little or not at all. This has led us to the conclusion that the 

template’s size is the basic factor that should determine the suitability of each method, the 

direct method being more suitable for smaller templates while the Fourier domain method 

for larger. We have supported the above conclusion by calculating exactly those “critical 

sizes” of a template that determine the preference bound between the two methods. 

The next logic step for confronting the problem was to search for those hardware 

architectures that could sufficiently support the previously analyzed algorithms. We saw that 

the general computation problem expresses grand parallelizability of data, i.e. of the images. 

Indeed, we ascertained that in the direct method the full computation may be divided even 

on pixel level while the Fourier domain method has some points where a similar division 

may be achieved. On the other hand, even though the basic computational stage of the 

Fourier domain method, i.e. the FFT, cannot be directly parallelized, it can be supported 

satisfactorily in a parallel implementation by lots of existing software packages. The above 

have led us naturally to a search for an architecture of SIMD type, i.e. an array processor. 

Due to its wide availability today and the relative easiness of its programming, the GPU was 

chosen as one of the two basic platforms we use, as it poses a modern, practical and rather 

powerful solution. The second basic platform is the multi-core processor, a classic choice, 

widely available today, even in personal computers. The use of the second choice was 

deemed necessary, as although the GPU’s availability is as of now wide, one is not available 

in every computer system, in contrast to a CPU of one or more cores. 

Having developed efficient algorithms and chosen suitable architectures, we proceeded 

in the combination of all into a practical and yet clever scheme, that lead to the creation of 

the FLCC library. This library incorporates all the algorithms and architectures that have been 

examined, in a way transparent towards the user. A basic element in its design is the use of 

the plan-execute model, according to which the library chooses automatically the suitable 

methodology (algorithm-architecture combination) for the execution of the operation 

required by the user, without having the latter need to know how exactly this is being 

managed. The basic advantage of this design is that the choice (planning stage) has to be 
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done only once per case, while its result may be used multiple times in different calculations 

(execution stage), something that leads to the noteworthy efficiency of the overall 

execution. Apart from this model, the library uses a multitude of other technical elements in 

order to improve efficiency. It uses internally the libraries FFTW and CUFFT for the execution 

of FFTs on CPU and GPU respectively. Those are libraries with a proven exquisite time 

performance. The planning stage required by those two libraries is incorporated in the 

planning stage of FLCC itself in a way that does not intrude in the least on the execution 

stage. The calculation of the FFTs is further accelerated by suitably expanding the images to 

dimensions that lead to fast transforms, so as to achieve efficient processing even of images 

with “difficult” dimensions (as in prime numbers). For the direct method a code generator 

was developed that generates highly optimized routines (full loop unrolling, computation 

minimization, optimized memory usage) leading to decisive optimizations in its execution 

time. Memory usage has a special part in the library’s efficiency. On GPU there has been an 

extensive use of shared memory that accelerates the direct method’s computations. 

Furthermore, special functions have been implemented in the interface of the library for the 

allocation and deallocation of memory on RAM, ensuring in a user-transparent way the 

efficiency of the data transfers. Finally, streaming was implemented in a way such that the 

time required to transfer the data to the GPU’s global memory be possibly nullified, by 

overlapping the image transfer with their processing, using a pipeline logic. All the above are 

combined under a small, simple and easy-to-use interface, providing the user with a 

software package ready for immediate use, without their need to know the least regarding 

the minutiae of its internal functions. 

Our work could not have possibly been complete without the experimental 

confirmation of all that have been described previously. We designed and performed an 

extensive series of experiments, aiming to cover all the individual aspects of the FLCC library, 

i.e. the algorithms, the architectures, the design and the implementation. Our goal was to 

test the degree to which the FLCC library satisfies its specifications and comprises a 

satisfactory solution to the problem of computing convolution and correlation coefficients. 

We ascertained that the execution times confirm the theoretical estimations and justify the 

choice of architectures. Specifically, the time efficiency of the developed algorithms was 

highlighted, the acceleration attained by the powerful architectures was demonstrated and 

the functionality and purposefulness of the basic design idea of the library, the plan-execute 

model, that similar to a web combines all the individual elements into a unified functional 

entity was, indeed, proven. 

 Concluding our endeavor, the final conclusion we could state is that the FLCC library 

constitutes an efficient, competitive and easy-to-use catholic solution to the problem of 

computing convolution and correlation coefficients that achieves its goal not by sacrificing 

the integrity of the calculations but by combining efficient algorithms and powerful 

architectures under a clever and practical scheme. 
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7 Future Work 

An endeavor as wide as this one could not easily be completed solely in a diploma 

dissertation. Until now we have thoroughly described FLCC library and have presented its 

features and capabilities. In this chapter, on the contrary, we will rather focus on its 

weaknesses and constraints. Our purpose is to search for those directions that our work 

from now on should follow, keeping in mind its constant improvement and expansion. We 

will discuss the three basic components of our work separately, i.e. the algorithms, the 

architectures and the FLCC implementation itself.  

We begin with the algorithms. In this thesis two basic algorithmic methods were 

developed, namely the direct method and the Fourier domain method. We deliberately 

though left aside the examination of a third method, no less promising than the other two. 

The latter is the method of “separable convolution – correlation”. This method can be 

applied in the case where the template is a separable function, that is, it can be expressed as 

the product of one-dimensional functions, their number being equal to the dimensionality of 

the template. After that, convolution – correlation may be fully calculated as a series of 

successive convolutions – correlations where the one-dimensional factors of the original 

template serve as the new templates. This method can lead to particularly low 

computational complexity. Its basic flaw, though, is that it is applicable only when the 

template is separable. Yet, even in this case, there is the possibility to expand its applicability 

to the general case if we take into account that every template, via a decomposition method 

such as the Singular Value Decomposition (SVD), can always be expressed as a finite sum of 

separable templates. Therefore, given that convolution and correlation are linear 

operations, it would be enough to perform “separable convolution – correlation” with each 

of the separable templates and then pointwisely add the results. We see now that, contrary 

to the methods already used in this thesis, the performance of “separable convolution – 

correlation” is highly dependent on the special characteristics of the template and in 

particular on the minimum number of separable templates the latter can be decomposed in. 

Nevertheless, the separable method could serve as a promising alternative in many cases 

and thus it would be of great interest to investigate its possibility of being incorporated in 

FLCC library. 

A second algorithmic improvement that would be worth to explore and possibly 

incorporate in the library is the usage of modified FFTs in the implementation of the Fourier 

domain method. The reason why this could be algorithmically beneficial is that, as we have 

seen, FFT results are themselves of no value whatsoever, serving merely as intermediate and 

temporary results. This means that we are not interested in the correctness of the transform 

itself but we only use it as a mere computational tool. The above observation offers the 

opportunity of modifying the FFT in such a way that allows its faster calculation, even 
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without producing the correct result, provided that this modification maintain the validity of 

convolution – correlation theorem. This improvement in the Fourier domain method could 

be quite important. Its disadvantage, which is the reason why this suggestion was left out of 

this thesis, is that it prohibits the usage of ready-to-use packages of optimized software that 

perform FFTs with notable efficiency, such as the FFTW and CUFFT libraries that we chose to 

utilize, and therefore makes it necessary to implement the modified transforms from 

scratch. It does not cease to be an interesting alterative to be explored though.  

We will now discuss our second subject, architectures. It is a fact that new hardware 

platforms are designed and become available on a constant basis, while the old ones evolve 

and improve all the time. Therefore, a software package, in order to remain up-to-date, 

needs to follow hardware evolution. Moreover, it is always interesting to transfer the 

software to a different, already existing and successful platform, since it expands its 

application field. With that in mind, FLCC library could benefit by the exploration of new 

architectures to be transferred to or by the greater utilization of those that already supports. 

For instance, for now FLCC library does not support an environment for distributed 

computation, such as a network of computational units (e.g. of MPI type). It is also 

noteworthy that the library can utilize only one GPU at a time while it would be important 

(and rather possible) to be able to take advantage of the computational power of more than 

one simultaneously, provided they were available in the system. In any case, the platforms 

already supported, and especially GPU, are rapidly developing architectures and 

consequently the library ought to follow their evolution and exploit them accordingly. 

Finally we will focus on the design and implementation of the FLCC library itself. It is a 

fact that the potential for improvement is something that follows every software package, 

even long after its birth. FLCC could not have been an exception to that. Its ambitious aim 

makes it vulnerable to weaknesses and constraints. We will here refer to version 1.3, which 

is the most recent up to the writing of this thesis. Even though the capabilities of this version 

are plenty, as then have been presented in detail, limitations are always present. For 

instance, we have already seen that the library offers the possibility for the processing of a 

stream of images, a feature of great significance, since it allows for a substantial increase in 

performance. Nonetheless, this possibility is limited to images of the same size, which are 

stored in successive memory locations and are all available in RAM before the start of the 

processing. Contrarily, several times in practice applications require streaming among 

images of various sizes, which might be stored in arbitrary memory locations or, even worse, 

become available meanwhile processing (such as in a real-time application). Another 

limitation regards the number of templates. FLCC library’s functions for now support 

convolution/LCC with one template at a time. Nevertheless, there exist applications 

requiring convolution/LCC with multiple templates which might as well be very different to 

one another, a feature not yet supported in the library. 

Having discussed the existing limitations, we now proceed to suggestions on expanding 

the functionality of FLCC library. Let’s begin with the simplest, i.e. the image dimensionality. 

Although typical images are two-dimensional or three-dimensional, an expansion of the 

FLCC operations to other dimensionalities (such as the one-dimensional case) or even the 

support of an arbitrary number of dimensions could broaden its application field. The same 
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is true for the numerical precision of its calculations. Until now our first priority has been the 

computation speed and thus only single-precision arithmetic has been used, which is well-

known to lead to faster computations on the one hand but to greater numerical errors on 

the other hand. Expanding to double-precision arithmetic could serve to applications where 

minimization of numerical errors plays a crucial role (such as medical-related applications) 

and the resulting decrease on speed is tolerable. As for the padding process on images, we 

have seen that the library in every calculation assumes the image to expand to every 

direction in zeros. In various applications it is desirable that this expansion be realized with 

values other than zero, such as with continuous repetition of the marginal values or 

periodical repetition of the whole image. Thus, it would be useful that this functionality be 

offered by the library’s functions and that the user be able to select a padding type 

according to their needs. Even more, it is possible that the user need only calculate a 

fraction of the whole convolution/LCC, such as the one where the overlapping between the 

image and the template is full (without the need for padding) or the one having the same 

size as the original image. Although the library calculates in each case the full result and 

therefore the user may always isolate the fraction of their interest, it would be useful if it 

were possible to calculate solely the fraction needed, so that no time be wasted on 

redundant calculations. A different and rather more ambitious expansion would be to 

incorporate in FLCC new operations, such as the calculation of local maxima – minima or 

local sums – averages. The common characteristic of the above operations with 

convolution/LCC is that all of them are based on the locality of calculations, which in fact 

governs the philosophy of the whole library. In a more long-term level, the library could be 

expanded to a generic library of local operations with a wide range of applications. Finally, 

regarding a more technical issue, the library could be transferred to other operating 

systems, such as MS Windows (without the need for Cygwin) or Mac OS. For now, the library 

only supports UNIX/Linux or MS Windows, via Cygwin, systems. Such an expansion could 

substantially widen its functionality spectrum. 

In conclusion, we would like to highlight that any weaknesses, limitations or expansion 

possibilities of FLCC library do not cancel its functionality and its various capabilities. On the 

contrary, they constitute opportunities for evolution, exploration and improvement. After 

all, constant improvement and updating of a software package is the only way that ensures 

not only its efficiency but also its longevity. 
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8 Appendix 

In this appendix we will repeat the entire set of experiments of chapter 5, this time on a 

different computer system with a multi-core processor (CPU) and a Graphics Processing Unit 

(GPU). Table 8.1 and Table 8.2 describe the features of the new CPU and GPU respectively. 

Table 8.1: CPU’s Technical Features 

Model AMD Opteron 6168  
Clock speed      GHz 
Number of cores      
Cache memory size     KB 
RAM size    GB 
Operating system GNU/Linux 

 

Table 8.2: GPU’s Technical Features 

Model NVIDIA GeForce GTX 480 
Clock speed      GHz 
Number of cores     
Shared memory size    KB/block 
Global memory size     GB 
Driver program CUDA Driver v4.0 

 

In order to make a quick initial comparison between CPU and GPU, we will use the same 

index as in section 5.2. Our CPU has    cores and a clock speed of      GHz, while our GPU 

has     cores and a clock speed of      GHz. Therefore we get: 

    

  
 
        

        
        (8.1) 

This value indicates that GPU should typically appear to be        times faster than CPU. 

In the rest of this chapter we will present in the form of diagrams all the results 

obtained by the re-execution of the experiments of chapter 5. We will simply list the results 

here without commenting on them. The purpose of this chapter is not to try to understand 

the functionality of FLCC (this has already been done in chapter 5) but to reinforce our 

experiments with further data, to include a second computer system in them and to contrast 

FLCC’s behavior between two different systems. The reader may refer to chapter 5 for a 

detailed description of the experiments and a thorough analysis of their results.  
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As in chapter 5, the presentation of the experimental results is divided in three sections: 

comparative performance of the various algorithms (8.1), comparative performance of the 

various architectures (8.2) and behavior of the plan-execute mechanism (8.3). 

8.1 Comparative Performance of Algorithms 

8.1.1 Constant Image – Varying Template 

 

Figure 8.1: Execution Times on CPU for Constant 2D Image 

 

Figure 8.2: Execution Times on GPU for Constant 2D Image 
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Figure 8.3: Execution Times on CPU for Constant 3D Image 

 

Figure 8.4: Execution Times on GPU for Constant 3D Image 
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8.1.2 Constant Template – Varying Image 

 

Figure 8.5: Execution Times on CPU for Constant 2D Template 

 

Figure 8.6: Execution Times on GPU for Constant 2D Template 
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Figure 8.7: Execution Times on CPU for Constant 3D Template 

 

Figure 8.8: Execution Times on GPU for Constant 3D Template 

We shall note here that in Figure 8.8 and in particular in the case of LCC, there does not 

seem to exist a result for the Fourier domain method (for both the single image and the 

streaming case) and for the image size of            . This happens because the 

memory requirements of this particular computation exceed the GPU capabilities of our 

system, hence the computation inevitably fails.  
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8.2 Comparative Performance of Architectures 

8.2.1 Constant Image – Varying Template 

 

Figure 8.9: Comparison between CPU and GPU for Constant 2D Image 

 

Figure 8.10: Comparison between CPU and GPU for Constant 3D Image 
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8.2.2 Constant Template – Varying Image 

 

Figure 8.11: Comparison between CPU and GPU for Constant 2D Template 

 

Figure 8.12: Comparison between CPU and GPU for Constant 3D Template 

In Figure 8.12, for the case of LCC via the Fourier domain method, there does not exist a 

result corresponding to the image size of            , since, as we have already 

mentioned, this particular computation fails on our system’s GPU due to insufficient 

memory size. 
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8.2.3 Number of Threads 

 

Figure 8.13: CPU Execution Times 2D for Varying Number of Threads 

 

Figure 8.14: CPU Execution Times 3D for Varying Number of Threads 
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8.3 Behavior of Plan-Execute Mechanism 

8.3.1 CPU Results 

 

Figure 8.15: Method Selection on CPU for 2D Single Image 

 

Figure 8.16: Method Selection on CPU for 2D Streaming 



Georgios Papamakarios, Georgios Rizos 

134 

 

Figure 8.17: Method Selection on CPU for 3D Single Image 

 

Figure 8.18: Method Selection on CPU for 3D Streaming 
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8.3.2 GPU Results 

 

Figure 8.19: Method Selection on GPU for 2D Single Image 

 

Figure 8.20: Method Selection on GPU for 2D Streaming 
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Figure 8.21: Method Selection on GPU for 3D Single Image 

 

Figure 8.22: Method Selection on GPU for 3D Streaming 

We shall note here that in Figure 8.21 and in Figure 8.22 the color map depicting the 

results does not exceed the image size of            . This happens because, due to 

the insufficient memory size of our system’s GPU, the entire set of FLCC computation 

routines inevitably fail for the image size of            . Therefore, the planning 

function is not able to select any of them and returns with an error. 
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