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1. INTRODUCTION

1.1. What is Fast Multipole Method

There are many websites discussing the fast multipole methods, including the website
by the authors of this manual (http://www.fastmultipole.org/). The following are from

a simple google search.

1. From Wikipedia, the free encyclopedia
(http://en.wikipedia.org/wiki/Fast_ Multipole Method)

“The Fast Multipole Method (FMM) is a mathematical technique that was devel-
oped to speed up the calculation of long-ranged forces in the N-Body Problem. It does
this by expanding the system Green’s Function using a Multipole Expansion, which
allows one to group sources that lie close together and treat them as if they are a single
source.

The FMM has also been applied in accelerating the iterative solver in the Method of
Moments (MOM) as applied to computational electromagnetics problems. The FMM
was first introduced in this manner by Greengard and Rokhlin [1] and is based on the
multipole expansion of the vector Helmholtz equation. By treating the interactions
between far-away basis functions using the FMM, the corresponding matrix elements
do not need to explicitly stored, resulting in a tremendous savings in the required
system memory. If the FMM is then applied in a hierarchical manner, it can improve
the complexity matrix-vector product in an iterative solver from O(N?) to O(NlogN).
This has expanded the area of applicability of the MOM to far greater problems than
were previously possible.

The FMM, introduced by Rokhlin and Greengard, has been acclaimed as one of the
greatest algorithms of the 20th century. The FMM algorithm dramatically reduces the

complexity of matrix-vector multiplication involving a certain type of dense matrix,
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which can arise out of many physical systems.
The FMM has also been applied for efficiently treating the Coulomb interaction
in Hartree-Fock and Kohn-Sham Density Functional Theory calculations in quantum

chemistry.”

2. A short course on fast multipole methods,

(http://math.nyu.edu/faculty/greengar/shortcourse_fmm.pdf)

3. Citation from the Steele Prize,
(http://www.ams.org/notices/200104/comm-steele.pdf)

“For the paper by L. Greengard and V. Rokhlin A fast algorithm for particle simu-
lations, J. Comput. Phys. 73, no. 2 (1987), 325348.

This is one of the most important papers in numerical analysis and scientific com-
puting in the last two decades. This paper introduces an algorithm, the fast multipole
method (FMM), that speeds up the computation of certain types of sums. It showed
that several ideas in harmonic analysis, far field expansions, and multiscale analy-
sis based on dyadic decompositions of space, together with some further innovations,
such as so-called translation operators, could be combined to produce a practical al-
gorithm that would make possible scientific and engineering computations that would
have been impossible before. While the paper itself treats a very special case, it con-
tains the fundamental ideas for a vast variety of generalizations and applications. The
paper combines both the elegance and originality of the algorithm itself and the hard
analysis of the proofs. These sums arise in a variety of applications, ranging from com-
putational astronomy (computing the gravitational interaction of stars in a galaxy),
to molecular dynamics (the Coulomb interaction of charges in a large molecule), to
engineering computations of radar scattering, to anything related to solutions of the
Laplace equation (vortex methods for incompressible flow). The FMM has been enor-
mously influential not just because of its basic scientific applications, but also because
it forms the basis of commercial software for electronic packaging analysis, semicon-
ductor design, and electro-magnetic applications. It has brought previously intractable

computational problems within reach.”



1.2. What is FMMYUK-U?

Although extremely useful, the FMM algorithms have been considered one of the most
complicated to progrom in scientific computing, especially the new version of fast
multipole method introduced by Greengard and Rokhlin in 1997.

Dr. Jingfang Huang started his work on the FMM since 1995 while he was a Ph.D.
Student at the Courant Institute of Mathematical Sciences at the New York University,
under the direction of Professor Leslie F. Greengard, one of the inventors of the FMM.
With the help and encouragements from Professors Greengard and Rokhlin, Dr. Jing-
fang Huang has been working on the fast multipole methods for different potentials
in the past, and has finished the preliminary version of both the uniform and adaptive
FMMs for the Laplace, Yukawa, and low frequency Helmholtz solvers. These solvers
are combined together and called the FMM Suite.

The FMMY UK-U is one of the solvers in the FMM Suite, it computes the screened
Coulombic (Yukawa) interactions of N particles where the data structure is based on a
uniform octree. This solver is open source under the GPL 2.0. Please see the included
licence file for details.

The authors of this package hopes that this solver can be useful for research in
scientific computing society. The code is still under active improvement. We welcome
suggestions, bug reports, comments, and collaborating opportunaties from our research

community.

1.3. Getting Started

This code computes
NATOMS

= ) ae i
i#j
where r; j = |x; —x;]| is the distance between the points x; and x;.

The main subroutine is the following

FMMY UK _UNI(BETA,NATOMS,ZAT,CHARGE,POT,FIELD,NLEV,IER)



The input variables include
e BETA(real *8): the inverse of the screening length.
o NATOMS(integer *4): the total number of particles.

e ZAT(3,natoms) (real *8): the location of each particle. Note that all particles

must be located inside the unit box centered at (0,0,0).
e CHARGE(natoms) (real *8): the charge each particle carries.

e NLEV (integer *4): the number of levels in the octree structure. For the uniform
code, nlev should be chosen such that the local interactions cost about the same
time as the far field evaluations. Note that on a computer with 2G memory,

NLEV can not be greater than 7.
The output variables are

e POT(natoms) (real *8): the potential at each particle location.
e FIELD(3,natoms) (real *8): the force field at each particle location.
e [ER (integer *4) : an index for error message.

For advanced users, check parm-uniyuk.h to change the accuracy of the algorithm.
Currently only 3 digits (NTERMS=NLAMBS=9) and 6 digits (NTERMS=NLAMBS=18)
accuracy are allowed.

The users are recommended to read the driver file for further information on how

to use the code.

1.4. Recommended Reading

We recommend the advanced programmers the following papers for understanding the

adaptive new version of fast multipole methods used in this package.

e Greengard, Leslie; Rokhlin, Vladimir, “A new version of the fast multipole
method for the Laplace equation in three dimensions”. Acta numerica, 1997,

229-269, Acta Numer., 6, Cambridge Univ. Press, Cambridge, 1997.
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e Cheng, H.; Greengard, L.; Rokhlin, V. “A fast adaptive multipole algorithm in
three dimensions.” J. Comput. Phys. 155 (1999), no. 2, 468—498.

e Greengard, Leslie F.; Huang, Jingfang, “A new version of the fast multipole
method for screened Coulomb interactions in three dimensions”. J. Comput.
Phys. 180 (2002), no. 2, 642—658.



2. METHODS

In this chapter, we discuss the technical details of the algorithm.

2.1. A Brief History

Clearly, direct calculation of the N-body electrostatic particle screened Coulombic in-
teractions requires O(N?) operations. In the last twenty years or so, novel fast sum-
mation algorithms have been developed to reduce the cost to O(NlogN) or the asymp-
totically optimal O(N). These algorithms include the hierarchical “tree code”, > fast
Fourier transform (FFT) based algorithms such as the precorrected FFT (pFFT)'® and
the particle-mesh Ewald (PME) methods,’ the hierarchical SVD method,'! and FFT on
multipoles.!* !> Further improvements show that asymptotically optimal O(N) com-
plexity can be achieved by using the wavelet techniques or the fast multipole method
(FMM).® However, as revealed by previous numerical experiments, although asymp-
totically optimal, the original FMM?® turns out to be less efficient for problem sizes
of current interest when compared with the tree code and FFT based O(NlogN) tech-
niques, due to the huge prefactor in O(N).

In 1997, Greengard and Rokhlin introduced a new version of FMM? for the Laplace
equation to further accelerate the performance of the FMM. Compared with the origi-
nal FMM, the plane wave expansion based diagonal translation operators dramatically
reduce the prefactor in the O(N) new version FMM, especially in three dimensions
where a break-even point of approximately 600 for 6 digits precision is numerically
observed. The package FMMYUK-U is based on the new version of FMM. Perhaps
due to its complexity in theory and programming, we are unaware of any previous

implementations of the new version FMM for the Yukawa potential.



2.2. New version fast multipole method

The original idea of FMM is to subdivide the summation system of N particles into
hierarchical groups of particles, and the potentials produced by far-field particles for
a given particle are approximated by using the multipole expansions (Figure 1a). The
fundamental observation in the multipole expansion based methods is that the numer-
ical rank of the far field interactions is relatively low and hence can be approximated
by P terms (depending on the prescribed accuracy) of the so-called “multipole expan-

sion”,

Mz

®(R,0,0) = ~Y Y My 2.1)

where the multipole coefficients,

~.

= 8Zq, " (0, B (2.2)

where the spherical harmonic function of order n and degree m is defined according to

the formula,’

Y,(8,0) = \/(2n41_<;)(+n|;|’)n!1 ) pj"l(cose)eint (2.3)

For the Debye-Hiickel (screened Coulombic) interaction, a similar expansion can be

written as follows,

N —K|R Bil P m=n
®(R,0,0) =) qi -—fv Y Y M -ki(xR)-Y,"(8,9) (2.4)
i=1 ‘ n=0m=—n
where the multipole coefficients,
My —SKZq, in(kpi) - Y, " (04, Bi) (2.5)

where i,,(r) and k,(r) are modified spherical Bessel and modified spherical Hankel

functions respectively. The modified spherical Bessel and modified spherical Hankel



functions are defined in terms of the conventional Bessel function via, !

1,(r) = i T, (ir), 2.6)
T

Kolr) = 5 1(r) — 1(r)]. @)

in(r) = /3o ls1/2(0) 23)

) =\ ko) 29

For arbitrary distributions of particles, a hierarchical oct-tree (in 3D) is generated so
each particle is associated with different boxes at different levels, and a divide-and-
conquer strategy is applied to account for the far field interactions at each level in
the tree structure. In the “tree code” developed by Appel,> and Barnes and Hut,?
as each particle interacts with 189 boxes in its “interaction list” through P terms of
multipole expansions at each level and there are O(logN) levels, the total amount
of operations is approximately 189P>NlogN. The tree code was later improved by
Greengard and Rokhlin in 1987.% 1In their original FMM, local expansions (under
a different coordinate system) were introduced to accumulate information from the

multipole expansions.

N P m=n
®(R,0,0) = Z ~Y Y LV-R'Y"(6,9) (2.10)
i=1 ‘R_ n=0m=-—n
where L are local expansion coefficients.
N —m
Y, o, Pi
LTZSZ%'%HB) 2.11)

i=1 i
For the screened Coulombic interaction, a similar expansion can be written as follows,

e—K\E—ﬁi\ P m=n

| n

i=1 ‘R —Pi n=0m=-—n
where

N
Ly =8k Y qika(kpi) - Y, " (0, Bi), (2.13)
i=1

As the particles only interact with boxes and other particles at the finest level, and

information at higher levels is transferred using a combination of multipole and local
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expansions, and the original FMM is asymptotically optimal O(N). However, because
the multipole to local translation requires prohibitive 189P* operations for each box,
the huge prefactor makes the original FMM less competitive with the tree code and
other FFT based methods. In 1997, a new version of FMM was introduced by Green-
gard and Rokhlin® for the Laplace equation. Compared with the original FMM, a
plane wave expansion based diagonal translation operator is introduced and the orig-
inal 189P* operations were reduced to 40P> + 2P3. In our algorithm, we adapt the
new version of FMM for the screened Coulomb interactions. Preliminary numerical
experiments show that the overall break even point of the new version FMM becomes

600 with 6-digit accuracy and about 400 for 3-digit.



3. USAGE EXAMPLES

3.1. A Sample Driver File

A sample driver file is provided in the package, check uniyukdriver.f

The code is also given in the following:

A driver file for FMMYUK-U

IMPLICIT NONE
INTEGER *4 NATOMS,NLEV,IER
PARAMETER (NATOMS=1000000)
REAL *8 BETA
REAL *8 ZAT(3,NATOMS),CHARGE(NATOMS)
REAL *8 POT(NATOMS),FIELD(3,NATOMS)
c
c—set up parameters.
c
BETA=0.1D0
NLEV=7
c
c—generate charges and their locations.
c
CALL DUMMY (NATOMS,ZAT,CHARGE)
c
c—call fmm to calculate the potential and field.
c
CALL FMMYUK_UNI(BETA,NATOMS,ZAT,CHARGE,POT,FIELD,NLEV,IER)

STOP
END
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4. USING FMMYUK-U

4.1. Compile and installation

After you download the package and extract it to your local computer, you will find the follow-
ing directories on your computer.

e doc: contains the license, readme.txt, and this manual.
e source: the source files and makefile of the package.

For compiling, check the file Makefile for further information.

The package has been successfully compiled using the Intel(©)compiler for Linux, and the
GNU(@©F95 compiler.

The compiled executable is named fmm, you may change it to anything you like.

11



5. PROGRAMMER’S NOTES

5.1. Programming Language

Most of the codes are in Fortran 77 style. We also use two commands (allocate and deallocate)
from Fortran 90 and later versions for dynamical memory allocations.

5.2. Special functions
One function which may be machine dependent is the subroutine for get the current CPU clock

information for timing purposes. The users should check their platform and compiler and write
such a subroutine. Check second.f for details.
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6. VARIABLES AND DATA STRUCTURE

6.1. Important variables in header file

Two important variables are defined in the header file parm-yukuni.h:
e nterms: the number of terms in the multipole and local expansions.
e nlambs: the number of terms in the exponential expansion.

Currently only 3 digits accuracy and 6 digits accuracy are allowed. We will add more options
in later versions.

6.2. Important variables in the code

The user should provide the number of particles, their locations and charges. The number of
particles is currently set by a parameter NAT OMS.

A data printing package is provided (see prini.f) for outputing integer, real and complex
type variables. The output unit is initiallized by calling “prini(num1, num?2)” where numl and
num?2 are two unit numbers for output. If set to 0, then it will not output those data. See the
file main.f for further information on calling prini().

6.3. Memory Allocation

FMM requires O(N) memory to store the coefficients of the expansions and precomputed ma-
trices for translation operators. There are two ways to define these variables.

1. The sizes of many variables are determined once NTERMS and NLAMBS are deter-
mined. These variables can be found at the header file parm-yukuni.h. Most of these
variables are for precomputed matrices.

2. The sizes of the rest of the variables will depend on the number of boxes in the oc-
tree structure. For these variables, integer pointers are created and three huge vectors
(integer, real and complex) are allocated.

13



7. IMPORTANT SUBROUTINES

uniyukdriver.f: the main driver for FMMYUK-U.

fmmyuk_uni (fmmuniyuk.f): the main subroutine for the FMMYUK-U.

yuniyuk (fmmuniyuk.f): this subroutine computes the far field contribution in the FMM.
ynbdirect (fmmuniyuk.f): this subroutine computes the nearest neighbor direct interaction.

14



8. FREQUENTLY ASKED QUESTIONS

1. Where can I download this package? http://www.fastmultipole.org
2.?

Any suggestions, bug reports, please let us know.
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